Devices made from stretchable electronic materials could be incorporated into clothing or attached directly to the body. Such materials have typically been prepared by engineering conventional rigid materials such as silicon, rather than by developing new materials. Here, we report a class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes. When stretched, the nanotube films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges), with high durability, fast response and low creep. We assembled the carbon-nanotube sensors on stockings, bandages and gloves to fabricate devices that can detect different types of human motion, including movement, typing, breathing and speech.
We present a rational and general method to fabricate a high-densely packed and aligned single-walled carbon-nanotube (SWNT) material by using the zipping effect of liquids to draw tubes together. This bulk carbon-nanotube material retains the intrinsic properties of individual SWNTs, such as high surface area, flexibility and electrical conductivity. By controlling the fabrication process, it is possible to fabricate a wide range of solids in numerous shapes and structures. This dense SWNT material is advantageous for numerous applications, and here we demonstrate its use as flexible heaters as well as supercapacitor electrodes for compact energy-storage devices.
Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2-200 m). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes.absorbance ͉ emissivity ͉ reflectance A black body is a theoretical object that absorbs all light that falls on it, because no light is transmitted or reflected (1). As a result, it appears perfectly black at room temperature and is the most efficient thermal absorber and emitter because any object at thermal equilibrium will emit the same amount of light as it absorbs at every wavelength. The radiation spectrum of a black body is determined solely by the temperature and not by the material, properties, and structure. These features, as an ideal source to emit or absorb radiation, make the black body valuable for many applications. For example, because the black body efficiently converts light to heat, it has great importance to solar energy collectors (2-5) and infrared thermal detectors, such as pyroelectric sensors (6-8). As a perfect emitter of radiation, a hot material with black body behavior would create an efficient infrared heater and would be valuable for heat liberation (9), particularly in space or in a vacuum where convective cooling is negligible.A requirement for an object to behave as a black body is that it perfectly absorbs light of all wavelengths; yet, in reality, black bodies do not exist. Emissivity is a measure of how similar an object is to a black body and is defined as the ratio of the energy radiated by that object and by a black body. Therefore, a black body would possess emissivity of unity for all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition, and thus, the emissivity of any real object is less than unity and is wavelength dependent.A good approximation of a black body is a cavity; however, this structure limits its utility. A material exhibiting black body behavior would solve this structural limitation and increase its practical usefulness. Hence, various processes and materials have been developed to blacken the surface by chemical treatment (10, 11), plating (4-6), and painting (8). Despite these efforts, emissivities for black coatings (Astro Black), chemically treated black surfaces (Hino Black), and microscale needle-like structure of nickel-phosphorus alloy (Anritsu Black) can be as high as 0.96 at 5-9 m but decreases notably at Ͼ9 m (Fig...
In order to be useful as microelectromechanical devices, carbon nanotubes with well-controlled properties and orientations should be made at high density and be placed at predefined locations. We address this challenge by hierarchically assembling carbon nanotubes into closely packed and highly aligned three-dimensional wafer films from which a wide range of complex and three-dimensional nanotube structures were lithographically fabricated. These include carbon nanotube islands on substrates, suspended sheets and beams, and three-dimensional cantilevers, all of which exist as single cohesive units with useful mechanical and electrical properties. Every fabrication step is both parallel and scalable, which makes it easy to further integrate these structures into functional three-dimensional nanodevice systems. Our approach opens up new ways to make economical and scalable devices with unprecedented structural complexity and functionality.
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.