Self-supervised multiplex graph representation learning (SMGRL) has attracted increasing interest, but previous SMGRL methods still suffer from the following issues: (i) they focus on the common information only (but ignore the private information in graph structures) to lose some essential characteristics related to downstream tasks, and (ii) they ignore the redundant information in node representations of each graph. To solve these issues, this paper proposes a new SMGRL method by jointly mining the common information and the private information in the multiplex graph while minimizing the redundant information within node representations. Specifically, the proposed method investigates the decorrelation losses to extract the common information and minimize the redundant information, while investigating the reconstruction losses to maintain the private information. Comprehensive experimental results verify the superiority of the proposed method, on four public benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.