Trichomoniasis is caused by Trichomonas vaginalis (T. vaginalis), which is a widespread and serious sexually transmitted pathogen in humans. The procedure of T. vaginalis adherence to the host cell is the precondition for T. vaginalis parasitism and pathogenicity. The AP33 adhesin of T. vaginalis (TvAP33) plays a key role in the process of adhesion. In this study, the specific primers for polymerase chain reaction (PCR) were designed based on the sequence of TvAP33 (GenBank Accession No. U87098.1) to amplify the open reading frame (ORF), and the ORF was inserted into pET-32a (+) to produce recombinant TvAP33 (rTvAP33). The sequence analysis indicated that the TvAP33 gene encoded a protein of 309 amino acids with 32.53 kDa, and the protein was predicted to have a high antigen index. Western blotting assay showed rTvAP33 was successfully recognized by the sera of mice experimentally infected with T. vaginalis, while native TvAP33 in the somatic extract of T. vaginalis trophozoite was as well detected by sera from rats immunized with the rTvAP33. Immunofluorescence analysis using an antibody against rTvAP33 demonstrated that the protein was expressed and located on the surface of T. vaginalis trophozoites. The recombinant protein was emulsified in Freund's adjuvant and used to immunize BALB/C mice three times at days 0, 14, and 28. The result of animal challenge experiments revealed the levels of IgG, IgG1, and IgG2a, and IL-4, IL-10, and IL17 among rTvAP33 vaccinated animals were integrally increased. Moreover, the rTvAP33 vaccinated animals were apparently prolonged survival time (26.45 ± 4.10) after challenge infection with this parasite. All these results indicated that TvAP33 could be used as vaccine candidate antigen to induce cell-mediated and humoral immunity.
With the rapid development of information technology in the field of medical and health, the requirement for information sharing was higher and higher. TCM plays an irreplaceable role in promoting health development. The information of TCM was represented by the construction, application and data sharing of information system, and faced complicated problems. Data environment, standardized data management requirements and data standards were very important. In the field of TCM, the main line was about "TCM information integration standardization, TCM standards into information", while the main data was taken as the basis of data standardization. This paper through the investigation and summary of the existing information system and data items, according to theoretical research of main data recognition by scholars, discussed the main data identification method by using analytic hierarchy process, and extracted the main data, so as to improve quality of data management and optimize data management environment.
Trichomonas vaginalis (T. vaginalis) could cause trichomoniasis through sexual transmission, which was globally distributed. In this study, the prevalence and phylogenetic analyses of T. vaginalis among men in Xinxiang were conducted. From October 2018 to December 2019, a total of 634 male clinical samples were collected, including 254 samples of semen, 43 samples of prostate fluid, and 337 samples of urine. These samples were examined by nested PCR and a total of 32 (5.05%) T. vaginalis-positive samples were detected. Among these samples, the positive rates of T. vaginalis in semen, prostate fluid, and urine were 7.87% (20/254), 4.65% (2/43), and 2.97% (10/337), respectively. Three actin genes were successfully isolated and sequenced from the 32 positive DNA samples, and the analysis of the sequence and phylogenetic tree showed that the three actin gene sequences exhibited 99.7%–100% homology to the published actin gene sequence (EU076580) in NCBI, and the T. vaginalis strains in the three positive samples were identified as genotype E. Our results demonstrate a notable genotype of T. vaginalis in the male population and provide insight into the performance of these genetic markers in the molecular epidemiology of trichomoniasis. However, further studies are needed to research the association between the genotype and the pathogenicity of T. vaginalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.