MRI has provided significant clinical utility in the diagnosis of diseases and will become a powerful tool to assess phenotypic changes in genetically engineered animals. Overhauser enhanced MRI (OMRI), which is a double resonance technique, creates images of free radical distributions in small animals by enhancing the water proton signal intensity by means of the Overhauser effect. Several studies have demonstrated noninvasive assessment of reactive oxygen species generation in small animals by using low frequency electron spin resonance (ESR) spectroscopy͞imaging and nitroxyl radicals. In vivo ESR signal intensities of nitroxyl radicals decrease with time after injection; and the decreases are enhanced by reactive oxygen species, generated in oxidative disease models in a site-specific manner. In this study, we show images of nitroxyl radicals with different isotopes by changing the external magnetic field for ESR irradiation between 14 N and 15 N nuclei in field-cycled OMRI. OMRI simultaneously obtained dual images of two individual chemical processes. Oxidation and reduction were monitored in a rate-dependent manner at nanometer scale by labeling membrane-permeable and -impermeable nitroxyl radicals with 14 N and 15 N nuclei. Phantom objects containing ascorbic acid-encapsulated liposomes with membrane-permeable radicals but not membrane-impermeable ones show a time-dependent decrease of the OMRI image intensity. The pharmacokinetics in mice was assessed with OMRI after radical administration. This OMRI technique with dual probes should offer significant applicability to nanometer scale molecular imaging and simultaneous assessment of independent processes in gene-modified animals. Thus, it may become a powerful tool to clarify mechanisms of disease and to monitor pharmaceutical therapy.ESR ͉ reactive oxygen species ͉ oxidative disease ͉ nanometer A natomic imaging modalities such as MRI, ultrasound, positron emission tomography, and x-ray computerized tomography (CT) have provided significant clinical utility in the diagnosis of diseases as well as help in monitoring treatment repeatedly and noninvasively (1). Information from such techniques is predominantly morphological in nature, which can, based on the architectural differences between normal and pathological conditions, identify disease states. Additional information related to physiological͞metabolic processes is obtained. With recent advances in imaging instrumentation as well as novel concepts in the design of contrast media, imaging of molecular events is rapidly emerging as a major field (2). In small animal imaging research, the importance of molecular imaging has assumed a major role, especially because the cost of certain genetically engineered animal models is high. Consequently noninvasive assessment of phenotypic changes is an advantage compared with killing the animals for histological examination. Molecular imaging research is driven by advances in both imaging modalities as well as the development of novel imaging beacons that can monito...
We have synthesized several nitroxides with different substituents which vary the steric and electronic environment around the N-O moiety and have systematically investigated the role of substituents on the stability of the radicals. Our results demonstrated the reactivity toward ascorbate correlates with the redox potential of the derivatives. Furthermore, ab initio calculations also indicated a correlation between the reduction rate and the computed singly occupied molecular orbital-lowest unoccupied molecular orbital energy gap, but not with solvent accessible surface area of the N-O moiety, supporting the experimental results and suggesting that the electronic factors largely determine the radicals' stability. Hence, it is possible to perform virtual screening of nitroxides to optimize their stability, which can help to rationally design novel nitroxides for their potential use in vivo.
Architectural and functional abnormalities of blood vessels are a common feature in tumors. A consequence of increased vascular permeability and concomitant aberrant blood flow is poor delivery of oxygen and drugs, which is associated with treatment resistance. In the present study, we describe a strategy to simultaneously visualize tissue oxygen concentration and microvascular permeability by using a hyperpolarized 1 H-MRI, known as Overhauser enhanced MRI (OMRI), and an oxygen-sensitive contrast agent OX63. Substantial MRI signal enhancement was induced by dynamic nuclear polarization (DNP). The DNP achieved up to a 7,000% increase in MRI signal at an OX63 concentration of 1.5 mM compared with that under thermal equilibrium state. The extent of hyperpolarization is influenced mainly by the local concentration of OX63 and inversely by the tissue oxygen level. By collecting dynamic OMRI images at different hyperpolarization levels, local oxygen concentration and microvascular permeability of OX63 can be simultaneously determined. Application of this modality to murine tumors revealed that tumor regions with high vascular permeability were spatio-temporally coincident with hypoxia. Quantitative analysis of image data from individual animals showed an inverse correlation between tumor vascular leakage and median oxygen concentration. Immunohistochemical analyses of tumor tissues obtained from the same animals after OMRI experiments demonstrated that lack of integrity in tumor blood vessels was associated with increased tumor microvascular permeability. This dual imaging technique may be useful for the longitudinal assessment of changes in tumor vascular function and oxygenation in response to chemotherapy, radiotherapy, or antiangiogenic treatment.angiogenesis ͉ dynamic nuclear polarization ͉ hyperpolarized MRI ͉ tumor hypoxia ͉ DCE-MRI
Piperidine and pyrrolidine nitroxyl radicals (nitroxide) contain unpaired electrons and have been widely recognized as antioxidants, contrast agents, spin probes, radiation protective agents and polymerization mediators. Nitroxyl radicals can react with free radicals and reductants and their reactivities depend on the basic structure of the nitroxyl radicals themselves. However, reductants easily reduce these radicals and they lose their paramagnetic nature and function. Therefore, the aim of this study was to develop various functional nitroxyl radicals, particularly focusing on stability towards AsA through the improvement of the synthetic route for a series of 2,6-substituted nitroxyl radicals. Tetraethyl-substituted piperidine nitroxyl radical 8 exhibited resistance to AsA reduction and 2,6-dispiro-4',4''-dipyrane-piperidin-4-one-N-oxyl 5 had a second-order rate constant 10-times greater than those of hydroxyl-TEMPO and oxo-TEMPO. The 2,6-substituted compound offers various reactivities towards AsA and the possibility to be used as a new antioxidant, contrast agent and radical polymerizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.