To identify the type of Verotoxins (VT) produced by Verocytotoxin-producing Escherichia coli (VTEC), a sensitive bead-enzyme-linked immunosorbent assay and polymerase chain reaction with common and specific primers to various VTs (VT1, VT2, VT2vha, VT2vhb, and VT2vp1) were developed. Together with colony hybridization tests with oligo-and polynucleotide probes, these methods were applied to VTEC isolates to type the VT produced. The toxin types of 26 of 37 strains were identified, but the reaction profiles in assays of the remaining 11 strains suggested the existence of new VT2 variants. The application of these identification procedures may be useful as a tool for clinical and epidemiological studies of VTEC infection.
A highly sensitive sandwich enzyme-linked immunosorbent assay to detect bacterial toxins was developed. Fab' of anti-toxin IgG was conjugated with horseradish peroxidase by the maleimide method and tetramethylbenzidine was used as substrate. As the solid phase, a 6.5 mm diameter polystyrene bead was used and this was coated with the anti-toxin IgG. The entire assay could be completed within 3.5 hr. The sensitivity of this bead-ELISA was found to be quite high with various bacterial toxins : less than 20 pg/ml for thermostable direct hemolysin of Vibrio parahaemolyticus, less than 60 pg/ml for Shiga toxin, less than 20 pg/ml for VT2 (Shiga-like toxin II) of Escherichia coli, less than 200 pg/ml for heat-labile enterotoxin of E. coli, and less than 6 pg/ml for cholera enterotoxin.
Rabbit (anti-spore coat protein) IgG was prepared by immunization with coat proteins extracted with sodium dodecyl sulfate and dithiothreitol from isolated spore coats of Bacillus megaterium ATCC 12872. Coat proteins were detected from 3 hr after the end of exponential growth (t3) in the mother cell cytoplasmic fiaction by sandwich enzyme immunoassay using this antibody. The proteins in the forespore coat protein fraction increased from t3 and reached a plateau at tin. Immunoblot analysis for the coat proteins in sporulating cells revealed the sequential synthesis of various proteins in the mother cell cytoplasmic fraction and simultaneous deposition of the same proteins as in the forespore coat fraction. These results suggest that turnover of precursor proteins of the spore coat is very rapid if precursor proteins are produced and they are proteolytically processed to produce mature proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.