In the CABRI-FAST experimental program, four in-pile tests were performed with slow-power-ramptype transient-overpower conditions (called hereafter as ''slow TOP'') to study transient fuel pin behavior under inadvertent control-rod-withdrawal-type events in liquid-metal-cooled fast breeder reactors. The slow TOP test with a preirradiated solid-pellet fuel pin under a power ramp rate of approximately 3%Po/s was realized as a comparatory test against an existing test in the CABRI-2 program where approximately 1%Po/s was adopted with the same type of fuel pin. In spite of the different power ramp rates, the evaluated fuel thermal conditions at the observed failure time are quite similar. Three slow TOP tests with the preirradiated annular fuel resulted in no pin failure showing a high failure threshold. Based on posttest examination data and a theoretical evaluation, it was concluded that intrapin free spaces, such as central hole, macroscopic cracks, and fuel-cladding gap, effectively mitigated the fuel cladding mechanical interaction. It was also clarified that cavity pressurization became effective only in the case of a very large amount of fuel melting. These CABRI-FAST slow TOP tests, in combination with the existing CABRI and TREAT tests, provided an extended slow TOP test database under various fuel and transient conditions.
In the CABRI-FAST and CABRI-RAFT programs within a collaboration with the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and Forschungszentrum Karlsruhe (FZK), five pulse-type transient overpower tests were performed in order to study fuel pin behavior and failure condition in the Unprotected Loss-of-Flow (ULOF) accident. In these tests, two types of low-smear-density fuels irradiated in the French Phénix reactor at different burn-up levels were used so that an experimental database extension from the former CABRI-1 and CABRI-2 programs can be obtained. Pin failure took place in three of these tests giving information on the failure threshold. In two tests, no pin failure took place and useful information related to the transient fuel behavior up to failure and failure mechanism was obtained. These test results were interpreted through detailed analysis of experimental data and PAPAS-2S code calculations. In these calculations, pretransient fuel characteristics obtained from the sibling fuels were reflected, such that the uncertainty of the boundary condition can be minimized. Through the comparison among these tests and formerly existing CABRI tests, generalized understanding on the transient fuel behavior was obtained. It was concluded that the low-smear-density fuel mitigates cavity pressurization, thereby enhancing the margin-to-failure. It was also understood that this failure-thresholdenhancing capability is dependent on the type of transient.
In the CABRI-FAST experimental program, four in-pile tests were performed with slow-power-ramptype transient-overpower conditions (called hereafter as ''slow TOP'') to study transient fuel pin behavior under inadvertent control-rod-withdrawal-type events in liquid-metal-cooled fast breeder reactors. The slow TOP test with a preirradiated solid-pellet fuel pin under a power ramp rate of approximately 3%Po/s was realized as a comparatory test against an existing test in the CABRI-2 program where approximately 1%Po/s was adopted with the same type of fuel pin. In spite of the different power ramp rates, the evaluated fuel thermal conditions at the observed failure time are quite similar. Three slow TOP tests with the preirradiated annular fuel resulted in no pin failure showing a high failure threshold. Based on posttest examination data and a theoretical evaluation, it was concluded that intrapin free spaces, such as central hole, macroscopic cracks, and fuel-cladding gap, effectively mitigated the fuel cladding mechanical interaction. It was also clarified that cavity pressurization became effective only in the case of a very large amount of fuel melting. These CABRI-FAST slow TOP tests, in combination with the existing CABRI and TREAT tests, provided an extended slow TOP test database under various fuel and transient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.