The real-time river stage prediction model was developed using the artificial neural network model, with deep learning as the training method. The main component of the model was the four-layer feed-forward network. As a network training method, the stochastic gradient descent method based on the back propagation technique was applied. The denoising autoencoder was applied as a pre-training method. The developed model was applied to one catchment of the Ooyodo River, one of the first-grade rivers in Japan. The hourly change in river stage and hourly rainfall were used as input to the model, while output data was the river stage of Hiwatashi. To clarify the suitable configuration of the model, a case study was done. The prediction result was compared with those of other prediction models. Consequently, the developed model showed the best performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.