(-)-Thallusin, isolated from a marine bacterium, is the only known natural product to act as an algal morphogenesis inducer. Because (-)-thallusin can only be obtained in exceedingly limited amounts from microbial cultivation, a synthetic supply of this compound is highly desirable. Here, we describe a novel synthetic pathway to (±)-thallusin and the first asymmetric synthesis of (-)-thallusin utilizing the enzymatic hydrolysis resolution with the combination of lipase PS-30 and lipase M Amamo-10.
Herein, we describe the intermolecular amination of allyl alcohols with sulfamates, which have been underutilized as nitrogen nucleophiles for allylic amination. Methyl sulfamate is a good nucleophile in the presence of mercuric triflate and efficiently generates monoallylation products in excellent yield at room temperature. Furthermore, the solid‐supported mercuric catalyst silaphenyl mercuric triflate also showed remarkable catalytic activity for the allylic amination.
We milled granular activated carbons (GACs) that had been used for 0-9 years in water treatment plants and produced carbon particles with different sizes and ages: powdered activated carbons (PAC, median diameter 12-42 μm), superfine PAC (SPAC, 0.9-3.5 μm), and submicron-sized SPAC (SSPAC, 220-290 nm). The fact that SPAC produced from 1-year-old GAC and SSPAC from 2-year-old GAC removed 2-methylisoborneol (MIB) from water with an efficiency similar to that of virgin PAC after a carbon contact time of 30 min suggests that spent GAC could be reused for water treatment after being milled. This potential for reuse was created by increasing the equilibrium adsorption capacity via reduction of the carbon particle size and improving the adsorption kinetics. During long-term (>1 year) use in GAC beds, the volume of pores in the carbon, particularly pores with widths of 0.6-0.9 nm, was greatly reduced. The equilibrium adsorption capacities of the carbon for compounds with molecular sizes in this range could therefore decrease with increasing carbon age. Among these compounds, the decreases of capacities were prominent for hydrophobic compounds, including MIB. For hydrophobic compounds, however, the equilibrium adsorption capacities could be increased with decreasing carbon particle size. The iodine number, among other indices, was best correlated with the equilibrium adsorption capacity of the MIB and would be a good index to assess the remaining MIB adsorption capacity of spent carbon. Spent GAC can possibly be reused as SPAC or SSPAC if its iodine number is ≥ 600 mg/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.