The mechanisms underlying the effect of epigallocatechin gallate (EGCG) on the micellar solubility of cholesterol were examined. EGCG eliminated both cholesterol and phosphatidylcholine (PC) from bile salt micelles in a dose-dependent manner in vitro. When the bile salt micelles contained a phospholipid other than PC, neither cholesterol nor the phospholipid was eliminated following the addition of EGCG. When vesicles comprised of various phospholipids were prepared and, EGCG was added to the vesicles, EGCG effectively and exclusively eliminated only PC. An intermolecular nuclear Overhauser effect (NOE) was observed between PC and EGCG in bile salt micelles with EGCG added, but not between cholesterol and EGCG, by using a NOE-correlated spectroscopy nuclear magnetic resonance method. The results of binding analyses using surface plasmon resonance (SPR) showed that EGCG did not bind to cholesterol. These observations strongly suggest that EGCG decreases the micellar solubility of cholesterol via specific interaction with PC.
8‐Prenylnaringenin (8‐PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8‐PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8‐PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8‐PN and its mother (non‐prenylated) compound naringenin. C57/BL6 mice were fed an 8‐PN or naringenin mixed diet for 22 days. The amount of 8‐PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the Cmax of 8‐PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8‐PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8‐PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8‐PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.
The extracellular accumulation of aggregated amyloid-β (Aβ) in the brain leads to the early pathology of Alzheimer’s disease (AD). The administration of exogenous plant-type ceramides into AD model mice can promote the release of neuronal exosomes, a subtype of extracellular vesicles, that can mediate Aβ clearance. In vitro studies showed that the length of fatty acids in mammalian-type ceramides is crucial for promoting neuronal exosome release. Therefore, investigating the structures of plant ceramides is important for evaluating the potential in releasing exosomes to remove Aβ. In this study, we assessed plant ceramide species with D-erythro-(4E,8Z)-sphingadienine and D-erythro-(8Z)-phytosphingenine as sphingoid bases that differ from mammalian-type species. Some plant ceramides were more effective than mammalian ceramides at stimulating exosome release. In addition, using deuterium chemistry-based lipidomics, most exogenous plant ceramides were confirmed to be derived from exosomes. These results suggest that the ceramide-dependent upregulation of exosome release may promote the release of exogenous ceramides from cells, and plant ceramides with long-chain fatty acids can effectively release neuronal exosomes and prevent AD pathology.
BackgroundUrolithin A (UA) is a metabolite produced by gut microbiota from ingested ellagic acid. Although the effect of ellagic acid intake on vascular endothelial function (VEF) improvement has been reported, the effect of UA intake on VEF improvement remains obscure. In addition, UA has been reported to improve the intestinal barrier function, and UA may have improved VEF by gut microbiome alteration.ObjectiveIn this study, we conducted a clinical trial to explore and analyze the effects of UA intake on vascular endothelial function (VEF) and characteristics of the intestinal environment, such as gut microbiome profiling and organic acid composition.MethodsA placebo-controlled, randomized, double-blinded, parallel group trial was conducted on participants who could metabolize small amounts of UA from ellagic acid (non-UA producers) and had relatively poor VEF. VEF was assessed using the flow-mediated vasodilatation (FMD) score. Participants were administered placebo, UA 10 mg/day, or UA 50 mg/day for 12 weeks. FMD was measured and fecal samples were collected at 0, 4, 8, and 12 weeks of treatment. Gut microbiome analysis and organic acid level measurements were performed to evaluate the effects of UA intake on the intestinal environment. This clinical trial is publicly registered at the UMIN-CTR, trial number: UMIN000042014.ResultsThe gut microbiota of the UA 50 mg/day group showed a significant increase in alpha diversity (Faith’s phylogenetic diversity). Four and nine microbial genera were significantly altered in the UA 10 mg/day and UA 50 mg/day groups, respectively (p < 0.05, not corrected). Participants whose FMD scores improved with UA intake had poor baseline FMD values as well as a low Bacillota/Bacteroidota ratio.ConclusionUrolithin A intake alters the gut microbiota and improves their alpha diversity. In addition, the effect of UA on VEF correlated with the individual gut microbiota. Our results have practical implications for a new approach to providing healthcare that focuses on intestinal environment-based diet therapy.
Pectolinarigenin (PG) and its glycoside pectolinarin (PN) were reported to have various health beneficial functions such as anti-inflammatory and anti-carcinogenic activities. It has also been reported that PG and PN have radical scavenging ability as direct antioxidant activity. However, the indirect antioxidant activity of PG and PN by inducing antioxidant enzymes in hepatocytes is not fully understood yet. In this study, we investigated whether PG and PN increase expression of antioxidant enzymes through the nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated pathway in human hepatoma HepG2 cells and the liver of male ICR mice. PG, but not PN, induced antioxidant enzymes, namely heme oxigenase-1, NAD(P)H:quinone oxidoreductase 1, and aldo-keto reductase family 1 member B10, in HepG2 cells. As for the induction mechanism of these enzymes, PG-induced nuclear accumulation of Nrf2 increased antioxidant response element (ARE)-mediated transcriptional activity and suppressed degradation of Nrf2 through modification of Kelch-like EXH-associated protein 1. Oral administration of PG also induced nuclear accumulation Nrf2 and expression of antioxidant enzymes in the liver of mice. Therefore, PG, but not PN, exhibits the indirect antioxidant activity by inducing antioxidant enzymes through the Nrf2/ARE pathway and may protect liver from oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.