Background Diabetes mellitus (DM) is a major risk factor for cardiovascular mortality by increasing endothelial cell (EC) dysfunction and subsequently accelerating atherosclerosis. Extracellular-signal regulated kinase 5 (ERK5) is activated by steady laminar flow and regulates EC function by increasing eNOS expression and inhibiting EC inflammation. However, the role and regulatory mechanisms of ERK5 in EC dysfunction and atherosclerosis are poorly understood. Here, we report the critical role of the p90 ribosomal S6 kinase (p90RSK)/ERK5 complex in EC dysfunction in DM and atherosclerosis. Methods and Results Inducible EC-specific ERK5 knockout (ERK5-EKO) mice showed increased leukocyte rolling and impaired vessel reactivity. To examine the role of endothelial ERK5 in atherosclerosis, we used inducible ERK5-EKO-LDLR−/− mice and observed increased plaque formation. When activated, p90RSK associated with ERK5, and this association inhibited ERK5 transcriptional activity and up-regulated VCAM-1 expression. In addition, p90RSK directly phosphorylated ERK5 S496 and reduced eNOS expression. p90RSK activity was increased in diabetic mouse vessels, and FMK-MEA, a specific p90RSK inhibitor, ameliorated EC-leukocyte recruitment and diminished vascular reactivity in DM mice. Interestingly, in ERK-EKO mice, increased leukocyte rolling and impaired vessel reactivity were resistant to the beneficial effects of FMK-MEA, suggesting a critical role for endothelial ERK5 in mediating the salutary effects of FMK-MEA on endothelial dysfunction. FMK-MEA also inhibited atherosclerosis formation in ApoE−/− mice. Conclusions Our study highlights the importance of the p90RSK/ERK5 module as a critical mediator of EC dysfunction in DM and atherosclerosis formation, thus revealing a potential new target for therapeutic intervention.
Fibroblast growth factor 21 (FGF21) has recently emerged as a metabolic hormone involved in regulating glucose and lipid metabolism in mouse, but the regulatory mechanisms and actions of FGF21 in humans remain unclear. Here we have investigated the regulatory mechanisms of the human FGF21 gene at the transcriptional level. A deletion study of the human FGF21 promoter (−1672 to +230 bp) revealed two fasting signals, including peroxisome proliferator-activated receptor α (PPARα) and glucagon signals, that independently induced human FGF21 gene transcription in mouse primary hepatocytes. In addition, two feeding signals, glucose and xylitol, also dose-dependently induced human FGF21 gene transcription and mRNA expression in both human HepG2 cells and mouse primary hepatocytes. FGF21 protein expression and secretion were also induced by high glucose stimulation. The human FGF21 promoter (−1672 to +230 bp) was found to have a carbohydrate-responsive element at −380 to −366 bp, which is distinct from the PPAR response element (PPRE). Knock-down of the carbohydrate response element binding protein by RNAi diminished glucose-induced human FGF21 transcription. Moreover, we found that a region from −555 to −443 bp of the human FGF21 promoter region exerts an important role in the activation of basic transcription. In conclusion, human FGF21 gene expression is paradoxically and independently regulated by both fasting and feeding signals. These regulatory mechanisms suggest that human FGF21 is increased with nutritional crisis, including starvation and overfeeding.
Objective-Arterial calcification is common and contributes to the pathogenesis of occlusive vascular disease. Similar to the dynamics of bone, it is a tightly controlled process that maintains a balance between osteogenesis and osteolysis. However, whether calcium homeostasis plays a role in the development of aneurysms has not been explored. We hypothesized that macrophages differentiate into osteoclasts in aneurysmal arteries and that protease byproducts contribute to aneurysm pathophysiology. Approach and Results-We performed histological and immunohistochemical analyses and showed that macrophages positive for several osteoclast markers, including tartrate acid phosphatase, occur in great numbers in the human aneurysmal aorta, but very few occur in the human stenotic aorta and none in the nondiseased human aorta. Moreover, in situ zymography showed elevated protease activity in these cells compared with undifferentiated macrophages. Tumor necrosis factor-α and calcium phosphate stimulated this osteoclastogenic differentiation process through nuclear factor-κB, mitogen-activated protein kinases, and intracellular calcium signaling but not the receptor activator of the nuclear factor-κB ligand. Inhibition of osteoclastogenic differentiation by bisphosphonate inhibits aneurysm development in a mouse model. Conclusions-These
Because extracellular signal-regulated kinase 5 (ERK5) inhibits endothelial inflammation and dysfunction, activating ERK5 might be a novel approach to protecting vascular endothelial cells (ECs) against various pathological conditions of the blood vessel. We have identified small molecules that protect ECs via ERK5 activation and determined their contribution to preventing cardiac allograft rejection. Using high throughput screening (HTS), we identified certain statins and anti-malarial agents including chloroquine (CQ), hydroxychloroquine (HCQ), and quinacrine (QC) as strong ERK5 “activators”. Pitavastatin enhanced ERK5 transcriptional activity and Kruppel-like factor-2 (KLF2) expression in cultured human and bovine ECs, but these effects were abolished by the depletion of ERK5. CQ and HCQ up-regulated ERK5 kinase activity and inhibited VCAM-1 expression in an ERK5-dependent but MEK5- and KLF2/4-independent manner. Leukocyte rolling and vascular reactivity were used to evaluate endothelial function in vivo, and we found that EC-specific ERK5 knockout (ERK5-EKO) mice exhibited increased leukocyte rolling and impaired vascular reactivity, which could not be corrected by pitavastatin. The role of endothelial ERK5 in acute cardiac allograft rejection was also examined by heterotopic grafting of the heart obtained from either wild type (WT) or ERK5-EKO mice into allomismatched recipient mice. A robust increase in both inflammatory gene expression and CD45-positive cell infiltration into the graft was observed. These tissue rejection responses were inhibited by pitavastatin in WT but not ERK5-EKO hearts. Our study has identified statins and anti-malarial drugs as strong ERK5 activators and shown that ERK5 activation is preventive of endothelial inflammation and dysfunction and acute allograft rejection.
The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.