The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2
16O and H2
18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.
The mist chemical vapor deposition (mist CVD) method, which uses ultrasonically atomized solutions as sources, is an environmental friendly and cost-effective technology for the growth of compound semiconductors. This growth process is realized under atmospheric pressure and allows us to use many kinds of salts, complexes, and compounds with low toxicity for sources. Using the oxidizability of water including the source, most of the previous reports of the mist-CVD method are on oxide materials. In this study, we fabricated zinc sulfide (ZnS) films by mist-CVD method using thiourea-based water solutions as sources. Investigating the growth of ZnS by mist-CVD under various growth conditions and experimental setups, we proposed zinc-chloride complexes are necessary for the growth of ZnS and vaporized mist sources act as precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.