Bonding dissimilar elements to provide synergistic effects is an effective way to improve the performance of metal catalysts. However, as the properties become more dissimilar, achieving synergistic effects effectively becomes more difficult due to phase separation. Here we describe a comprehensive study on how subnanoscale alloying is always effective for interelemental synergy. Thirty-six combinations of both bimetallic subnanoparticles (SNPs) and nanoparticles (NPs) were studied systematically using atomic-resolution imaging and catalyst benchmarking based on the hydrogen evolution reaction (HER). Results revealed that SNPs always produce greater synergistic effects than NPs, the greatest synergistic effect was found for the combination of Pt and Zr. The atomic-scale miscibility and the associated modulation of electronic states at the subnanoscale were much different from those at the nanoscale, which was observed by annulardark-field scanning transmission electron microscopy (ADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively.
Traditionally, chemistry has been developed to obtain thermodynamically stable and isolable compounds such as molecules and solids by chemical reactions. However, recent developments in computational chemistry have placed increased importance on studying the dynamic assembly and disassembly of atoms and molecules formed in situ. This study directly visualizes the formation and dissociation dynamics of labile dimers and trimers at atomic resolution with elemental identification. The video recordings of many homo- and hetero-metallic dimers are carried out by combining scanning transmission electron microscopy (STEM) with elemental identification based on the Z-contrast principle. Even short-lived molecules with low probability of existence such as AuAg, AgCu, and AuAgCu are directly visualized as a result of identifying moving atoms at low electron doses.
Bonding dissimilar elements to provide synergistic effects is an effective way to improve the performance of metal catalysts. However, as the properties become more dissimilar, achieving synergistic effects effectively becomes more difficult due to phase separation. Here we describe a comprehensive study on how subnanoscale alloying is always effective for interelemental synergy. Thirty-six combinations of both bimetallic subnanoparticles (SNPs) and nanoparticles (NPs) were studied systematically using atomic-resolution imaging and catalyst benchmarking based on the hydrogen evolution reaction (HER). Results revealed that SNPs always produce greater synergistic effects than NPs, the greatest synergistic effect was found for the combination of Pt and Zr. The atomic-scale miscibility and the associated modulation of electronic states at the subnanoscale were much different from those at the nanoscale, which was observed by annulardark-field scanning transmission electron microscopy (ADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.