Conventional freezing procedures and containers are not appropriate for spermatozoa from the testis because of their low number and poor in-situ motility, and various types of container have been utilized to freeze small numbers of spermatozoa. This study tried to develop a vitrification method for small numbers of spermatozoa using the Cell Sleeper, which is a closed type of cell-cryopreservation container. The container with spermatozoa were cooled in liquid nitrogen vapour and then stored in a cryotank. Sperm motility parameters improved significantly (P < 0.05) by vitrification in oil-free droplets rather than in droplets covered with oil. After vitrification of five spermatozoa per container, all spermatozoa were recovered and the viable sperm rate was significantly higher when spermatozoa were vitrified in a 3.5-ll droplet rather than in 0.5 ll (72.0% versus 38.0%; P < 0.01). Recovery, motility and viability rates of vitrified–warmed spermatozoa were similar between the Cell Sleeper and the CryoTop groups. In conclusion, the Cell Sleeper is a highly effective tool for the cryopreservation of small numbers of spermatozoa and limited cells can be vitrified quickly and simply without significant loss.
There have been two primary sources for industrial indium; one from massive sulfides, while the other is dissemination-veins and skarns, related to felsic igneous rocks. The latter group of the In-bearing deposits is abundant in the Japanese Islands. Indium occurs as In-minerals such as sakuraiite, roquesite, laforetite and many unidentified minerals, but the majority is contained as an impurity in sphalerite, and tin and copper sulfides. Average grades of the ores from which indium has been extracted vary from a few ppm (e.g., Kosaka mine) to more than 300 ppm (Toyoha mine). The amount of indium in all the major basemetal deposits is estimated by analyzing representative samples. The main indium deposits are subvolcanic and tin-polymetallic vein types. The largest one is Toyoha mine (4,700 tons In) and the Ashio mine (ca. 1,200 tons In) was found to be the second largest. Many small occurrences, were recognized in the Miocene magnetite-series belt, besides the classic occurrences in the ilmenite-series granitic terrains of SW Japan, including the Ikuno and Akenobe tin(-tungsten) polymetallic veins, located in the northern margin of the late Cretaceous Sanyo ilmenite-series province. Magnetite-series magmas with deep source are necessary to concentrate sulfur in the magma chamber but sedimentary source rocks and their reducing agents are needed to collect and to precipitate indium. The Japanese islands are essentially accretionary terrains intruded by various deep oxidized magmas; thus forming magnetite/ilmenite-series paired belts, which are sometimes mixed. This unique geologic setting may be the most fundamental reason why indium is rich in vein-type deposits of the Japanese Island arcs.
Shunso Ishihara and Yuji Endo (2007) Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan. Bull. Geol. Surv. Japan, vol. 58 (1/2), 7-22, 5 figs, 4 tables. Abstract:By analyzing trace elements of massive sulfide ores from rhyodacite-related Kuroko deposits (35 samples) and Yanahara pyrite deposits (10 samples), andesite-related Taro deposits (4 samples), and basalt-related non-metamorphosed Shimokawa, Tsuchikura and Makimine deposits (6 samples) and metamorphosed Besshi-type deposits (25 samples), potentiality of indium resource was evaluated. In the major Hokuroku Basin for Kuroko deposits, those of the eastern side, such as the Kosaka-Uchinotai (avg. 26 ppm In), the Hanawa and Furutobe are relatively rich in indium, and the indium contents are correlated with not zinc but copper content. This indium may be contained in tetrahedrite-group minerals of the Kuroko horizon in a narrow sense. Based upon an average content of indium in the Kosaka-Uchinotai deposits and In-production in the 1970's, a recoverable amount in the Kosaka deposits is estimated to be 50 tons In, which are smaller two orders of magnitude than the world-class In-bearing massive sulfides deposits. On the contrary, In-anomalies are observed in the zinc concentrates of the Sazare and Shirataki mines, implying that indium in the Besshi-type deposits are mainly contained in sphalerites. Zinc grades of the crude ores of the Besshi-type deposits are low as 0.n% level. A large potentiality cannot be expected on the Besshi-type ore deposits. The high Invalues up to 207 ppm were obtained on the Cu-pyrrhotite-rich ores at Yanahara hosted in the Permian rhyolites. Sporadic In-anomalies, up to 167 ppm, have also been observed in ores from the thermally metamorphosed lower levels of the Besshi deposits. These are considered due to later hydrothermal In-enrichment along fractures by Miocene intrusion of the ilmenite series-granitoids of the Outer Zone of SW Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.