Although NFkappaB binding activity is induced during liver regeneration after partial hepatectomy, the physiological consequence of this induction is unknown. We have assessed the role of NFkappaB during liver regeneration by delivering to the liver a superrepressor of NFkappaB activity using an adenoviral vector expressing a mutated form of IkappaBalpha. This adenovirus (Ad5IkappaB) was almost exclusively expressed in the liver and inhibited NFkappaB DNA binding activity and transcriptional activity in cultured cells as well as in the liver in vivo. After partial hepatectomy, infection with Ad5IkappaB, but not a control adenovirus (Ad5LacZ), resulted in the induction of massive apoptosis and hepatocytes as demonstrated by histological staining and TUNEL analysis. In addition, infection with Ad5IkappaB but not Ad5LacZ decreased the mitotic index after partial hepatectomy. These two phenomena, increased apoptosis and failure to progress through the cell cycle, were associated with liver dysfunction in animals infected with the Ad5IkappaB but not Ad5LacZ, as demonstrated by elevated serum bilirubin and ammonia levels. Thus, the induction of NFkappaB during liver regeneration after partial hepatectomy appears to be a required event to prevent apoptosis and to allow for normal cell cycle progression.
RF ablation and PMC thus far have had equivalent therapeutic effects, complication rates, and rates of residual foci of untreated disease. However, RF tumor ablation can be achieved with fewer sessions.
Toxins convert the hepatocellular response to tumor necrosis factor-α (TNF-α) stimulation from proliferation to cell death, suggesting that hepatotoxins somehow sensitize hepatocytes to TNF-α toxicity. Because nuclear factor-κB (NF-κB) activation confers resistance to TNF-α cytotoxicity in nonhepatic cells, the possibility that toxin-induced sensitization to TNF-α killing results from inhibition of NF-κB-dependent gene expression was examined in the RALA rat hepatocyte cell line sensitized to TNF-α cytotoxicity by actinomycin D (ActD). ActD did not affect TNF-α-induced hepatocyte NF-κB activation but decreased NF-κB-dependent gene expression. Expression of an IκB superrepressor rendered RALA hepatocytes sensitive to TNF-α-induced apoptosis in the absence of ActD. Apoptosis was blocked by caspase inhibitors, and TNF-α treatment led to activation of caspase-2, caspase-3, and caspase-8 only when NF-κB activation was blocked. Although apoptosis was blocked by the NF-κB-dependent factor nitric oxide (NO), inhibition of endogenous NO production did not sensitize cells to TNF-α-induced cytotoxicity. Thus NF-κB activation is the critical intracellular signal that determines whether TNF-α stimulates hepatocyte proliferation or apoptosis. Although exogenous NO blocks RALA hepatocyte TNF-α cytotoxicity, endogenous production of NO is not the mechanism by which NF-κB activation inhibits this death pathway.
Our findings show that transient human matrix metalloproteinase-1 overexpression in the liver effectively attenuates established fibrosis and induces hepatocyte proliferation.
Tumor necrosis factor (TNF)alpha, a pivotal cytokine involved in inflammation, is produced primarily by Kupffer cells in the liver. It has been shown that inactivation of Kupffer cells prevents alcohol-induced liver injury; therefore, the purpose of this study was to determine if neutralizing anti-TNF-alpha antibody is also effective. Male Wistar rats were exposed to ethanol (11 to 12 g x kg(-1) x d[-1]) continuously for up to 4 weeks via intragastric feeding using an enteral feeding model. Before ethanol exposure, polyclonal anti-mouse TNF-alpha rabbit serum was injected (2.0 mg/kg intravenously). There were no significant differences in body weight, mean ethanol concentration, or cyclic patterns of ethanol in urine when ethanol- and ethanol plus antibody-treated groups were compared. Expression of TNF-alpha and macrophage inflammatory protein 2 (MIP-2) messenger RNA (mRNA), determined using reverse transcription-polymerase chain reaction, was three- to four-fold higher in livers of ethanol-treated rats than in those of rats fed an ethanol-free, high-fat control diet. In addition, MIP-2 levels were also elevated when detected by Northern blot analysis. Anti-TNF-alpha antibody did not affect expression of mRNA for interleukin (IL) 1alpha, IL-6, transforming growth factor beta1, or TNF-alpha. However, MIP-2 mRNA expression, which is regulated by TNF-alpha, was decreased significantly by anti-TNF-alpha antibody treatment. Serum aspartate transaminase levels were elevated in ethanol-treated rats to 136 +/- 12 IU/L after 4 weeks but only reached 90 +/- 5 IU/L (P < .05) in rats treated with anti-TNF-alpha antibody. The hepatic inflammation and necrosis observed in ethanol-fed rats were attenuated significantly by antibody treatment, and steatosis was not. These results support the hypothesis that TNF-alpha plays an important role in inflammation and necrosis in alcohol-induced liver injury and that treatment with anti-TNF-alpha antibody may be therapeutically useful in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.