The objective of this study was to evaluate the influences of enamel shape and bracket base configuration on shear bond strength from a biomechanical point of view. To this end, shear bond test and stress analysis using finite element method (FEM) were performed. Results obtained from both tests were then comprehensively investigated. Maxillary incisors were prepared for plane specimens, while mandibular premolars were prepared for curvature specimens. Shear bond test was carried out with three different test conditions. Two finite element models of enamel shape and bracket base configuration were also created. An approximate mean load of 200 N was applied. Results revealed that the shear bond strength of plane model was higher than that of curvature model. In conclusion, the present study revealed that shear bond strength was significantly influenced by enamel shape and bracket base configuration, whereby a curvature configuration tended to have lower bond strength.
A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.