An ultrawideband (UWB) radar-based breast cancer detection system, which is composed of complementary metal-oxide-semiconductor integrated circuits, is presented. This system includes Gaussian monocycle pulse (GMP) generation circuits, switching (SW) matrix circuits, equivalent-time sampling circuits, and a compact UWB antenna array. During the detection process, the GMP signal with the center frequency of 6 GHz is first generated and transmitted with a repetition frequency of 100 MHz. The GMP signal is sent to a selected transmitter antenna by the SW matrix module, and the reflected signal is captured by the receiver antennas. Next, the high-speed equivalent-time sampling circuits are employed to retrieve the reflected GMP signal. A confocal algorithm is used to reconstruct the breast image. The total size for the prototype module is 45 cm × 30 cm × 14.5 cm in length, width, and height, respectively, which is dramatically smaller than the conventional detection systems. Using our proposed system, we demonstrate a successful detection of 1-cm cancer target in the breast phantom.INDEX TERMS Breast cancer, CMOS, microwave imaging, ultrawideband, confocal algorithm.
Short channel MOSFET exhibits the characteristics of wide bandwidth and low DC gain. A low DC gain causes a high gain error and a narrow output linear range in the closed loop. The DC gains can be improved by using the cascade structure, but frequency compensation is required due to the increase in the number of poles. The output nodes of each stage in a cascade Common-Source amplifier have a cascade of zero, and this zero is cancelled out by the input node of the next stage. This paper proposes a three-stage operational amplifier (op-amp) with frequency compensation using cascade zero. This op-amp was implemented in the 180 nm CMOS technology and achieved 86.96 MHz unity–gain frequency, 51.7° phase margin at 32 pF load capacitor and 99.83 dB DC gain, that is, a 36.21 dB improvement over a two-stage op-amp with the same power consumption. The op-amp consumed 7.74 mW with a supply voltage of 1.8 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.