The prevalence of hypertension is increasing globally, while strategies for prevention and treatment of hypertension remain limited. FG-4592 (Roxadustat) is a novel, orally active small-molecule HIF stabilizer, and is being used clinically to treat CKD anemia. In the present study, we evaluate the effects of FG-4592 on hypertension. In an Ang II hypertension model, FG-4592 abolished hypertensive responses, prevented vascular thickening, cardiac hypertrophy, and kidney injury, downregulated AGTR1 expression, and enhanced AGTR2, eNOS, and HIF1α protein levels in the aortas of mice. Additionally, the levels of thiobarbituric acid reactive substances (TBARs) in blood and urine were diminished by FG-4592 treatment. In vascular smooth muscle cells, FG-4592 treatment reduced AGTR1 and increased AGTR2 levels, while preventing Ang II-induced oxidative stress. In vascular endothelial cells, FG-4592 upregulated total and phosphorylated eNOS. Moreover, FG-4592 treatment was hypotensive in L-NAME-induced hypertension. In summary, FG-4592 treatment remarkably ameliorated hypertension and organ injury, possibly through stabilizing HIF1α and subsequently targeting eNOS, AGTR1, AGTR2, and oxidative stress. Therefore, in addition to its role in treating CKD anemia, FG-4592 could be explored as a treatment for hypertension associated with high RAS activity or eNOS defects.
This study was conducted to investigate the relationship between Acinetobacter baumannii biofilm formation and antibiotic resistance. Furthermore, the effects of PAβN, a potential efflux pump inhibitor, on A. baumannii biofilm formation and dispersion were tested, and the gene expression levels of efflux pumps were determined to study the mechanisms. A total of 92 A. baumannii isolates from infected patients were collected and identified by multiplex PCR. The antimicrobial susceptibility of A. baumannii clinical isolates was tested by VITEK 2 COMPACT®. Genotypes were determined by ERIC‐2 PCR. Biofilm formation and dispersion were detected by crystal violet staining. The presence and mRNA expression of efflux pump genes were analyzed by conventional PCR and real‐time PCR, respectively. More than 50% of the A. baumannii strains formed biofilm and were divided into different groups according to their biofilm‐forming ability. Antibiotic resistance rates among most groups did not significantly differ. There were 7 clonal groups in 92 strains of A. baumannii and no dominant clones among the different biofilm‐forming groups. PAβN inhibited A. baumannii biofilm formation and enhanced its dispersion, whereas adeB, adeJ, and adeG and the mRNA expression of adeB, abeM, and amvA showed no differences in the different biofilm‐forming groups. In conclusion, there was no clear relationship between biofilm formation and antibiotic resistance in A. baumannii. The effects of PAβN on A. baumannii biofilm formation and dispersion were independent of the efflux pumps.
Early-activated CD8 + T cells increase both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). However, whether and how the augmentation of OXPHOS regulates differentiation of effector CD8 + T cell remains unclear. Here, we found that C1qbp was intrinsically required for such differentiation in antiviral and antitumor immune responses. Activated C1qbp-deficient CD8 + T cells failed to increase mitochondrial respiratory capacities, resulting in diminished acetyl-coenzyme A as well as elevated fumarate and 2-hydroxyglutarate. Consequently, hypoacetylation of H3K27 and hypermethylation of H3K27 and CpG sites were associated with transcriptional down-regulation of effector signature genes. The effector differentiation of C1qbp-sufficient or C1qbp-deficient CD8 + T cells was reversed by fumarate or a combination of histone deacetylase inhibitor and acetate. Therefore, these findings identify C1qbp as a pivotal positive regulator in the differentiation of effector CD8 + T cells and highlight a metabolic-epigenetic axis in this process.
To perform their antiviral and antitumor functions, T cells must integrate signals both from the T cell receptor (TCR), which instruct the cell to remain quiescent or become activated, and from cytokines that guide cellular proliferation and differentiation. In mature CD8 + T cells, Themis has been implicated in integrating TCR and cytokine signals. We investigated whether Themis plays a direct role in cytokine signaling in mature T cells. Themis was required for IL-2– and IL-15–driven CD8 + T cell proliferation both in mice and in vitro. Mechanistically, we found that Themis promoted the activation of the transcription factor Stat and mechanistic target of rapamycin signaling downstream of cytokine receptors. Metabolomics and stable isotope tracing analyses revealed that Themis deficiency reduced glycolysis and serine and nucleotide biosynthesis, demonstrating a receptor-proximal requirement for Themis in triggering the metabolic changes that enable T cell proliferation. The cellular, metabolic, and biochemical defects caused by Themis deficiency were corrected in mice lacking both Themis and the phosphatase Shp1, suggesting that Themis mediates IL-2 and IL-15 receptor-proximal signaling by restraining the activity of Shp1. Together, these results not only shed light on the mechanisms of cytokine signaling but also provide new clues on manipulating T cells for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.