Hydrogen peroxide (H2O2) and glucose play a key role in many cellular signaling pathways. The efficient and accurate in situ detection of H2O2 released from living cells has attracted extensive research interests. Herein, a new porphyrin-based porous covalent organic framework (TAP-COF) was fabricated via one-step condensation of 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride and 5,10,15,20-tetrakis (4-aminophenyl)porphyrin iron(III). The obtained TAP-COF has high surface areas, abundant surface catalytic active sites, and highly effective electron transport due to its precisely controllable donor–acceptor arrangement and 3D porous structure. Then, the new TAP-COF exhibited excellent peroxidase-like catalytic activity, which could effectively catalyze oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine by H2O2 to produce a typical blue-colored reaction. On this basis, simple, rapid and selective colorimetric methods for in situ H2O2 detection were developed with the detection limit of 2.6 nM in the wide range of 0.01 to 200 μM. The colorimetric approach also could be used for in situ detection of H2O2 released from living MCF-7 cells. This portable sensor based on a COF nanozyme not only opens a new path for point-of-care testing, but also has potential applications in the field of cell biology and clinical diagnosis.
The design and exploration of efficient, stable and environmentally compatible organic emitters for an electrochemiluminescence (ECL) sensor is a promising topic. Herein, a novel environmentally-friendly luminophore, ZnBCBTP@MWCNTs, were fabricated via selfassembly of porphyrin molecules (ZnBCBTP) onto multiwalled carbon nanotubes (MWCNTs). The resulting luminophore ZnBCBTP@MWCNTs displayed not only the highly ECL property and but also the good accel-erated electron mobility. Then, a label-free ECL biosensor based ZnBCBTP@MWCNTs was constructed for the ultrasensitive detection of uric acid. Excitingly, this proposed ECL biosensor performed a good linear relationship in the range of 0-300 μM with a low detection limit of 1.4 μM, thus offering another reliable and feasible sensing platform for clinical bioanalysis with good selectivity, stability, and repeatability.
Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, a MWCNTs@COF-366-Co electrochemical biosensor has been successfully used to sensitively monitor NO released from HUVECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.