Layer‐by‐layer organic photovoltaics (LbL‐OPVs) are fabricated using wide bandgap polymer D18 with narrow photon harvesting range in visible light region and narrow bandgap small molecular N3 with strong near‐infrared photon harvesting; the only difference is D18 layer thickness adjusted by spin coating speed. A 15.75% power conversion efficiency (PCE) is obtained from the LbL‐OPVs with D18 layer prepared under 7000 round per minute of spin coating condition; the corresponding D18/N3 layers have a 52.06% of average visible transmittance (AVT) in the spectral range from 370 to 740 nm. Based on the optimized D18/N3 layers, semitransparent LbL‐OPVs are built with 1 nm Au/(10, 15, 20 nm) Ag as the top electrode. The PCE and AVT of semitransparent LbL‐OPVs can be simultaneously adjusted by altering Ag layer thickness due to its variable reflectance and conductivity of top electrode dependence on Ag layer thickness. The PCE/AVT of 12.58%/22.81%, 13.80%/15.09%, and 14.85%/9.48% can be individually achieved from the semitransparent LbL‐OPVs with 10, 15, or 20 nm‐thick Ag layer, which should be among the highest values of semitransparent OPVs based on bulk heterojunction or LbL structures. Adjusting donor layer thickness may be an effective method to construct efficient semitransparent LbL‐OPVs.
Optimizing active layer morphology and broadening spectrum utilization range are important methods to improve the performance of organic solar cells (OSCs). In this study, PM6/Y6:PC71BM pseudo-bilayer ternary organic solar cells...
Prussian blue analogues (PBAs) have been considered as promising cathodes for aqueous zinc-ion batteries because of their open framework for accommodating large ions, tunable valence state, and facile synthesis. Among PBAs, potassium manganese hexacyanoferrate (KMHCF) is favored due to its high working voltage, high specific capacity, and low cost. However, it suffers from severe capacity decay and poor rate capability, which are mainly a result of poor intrinsic conductivity, irreversible phase transition, transition metal dissolution, and structural collapse during charge/discharge cycling. These issues extremely limit its practical application. In order to solve these problems, conductive polypyrrole (PPy) was used to coat KMHCF microcubes to form KMHCF@PPy composites to achieve superior rate capability and prolonged cycle life. With the PPy coating, the KMHCF@PPy composite delivers a discharge capacity of 107.6 mA h g −1 after 100 cycles at 100 mA g −1 , and even at 500 mA g −1 after 500 cycles, 64.2 mA h g −1 still remained. The excellent electrochemical performance can be attributed to the effects from PPy. On the one hand, PPy supplies an effective electronic transmission network for KMHCF to enhance the electronic conductivity. On the other hand, it plays the role of a protective layer to effectively inhibit the dissolution of Mn and the phase transition during the cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.