We analyzed repeat sequences composition in the genome of cucumber inbred line 9930 using whole-genome shotgun reads. The analysis showed that satellite DNA sequences are the most dominant components in the cucumber genome. The distribution pattern of several tandem repeat sequences (Type I/II, Type III and Type IV) on cucumber chromosomes was visualized using fluorescence in situ hybridization (FISH). The FISH signals of the Type III and 45S rDNA provide useful cytogenetic markers, whose position and fluorescence intensity allow for easy identification of all somatic metaphase chromosomes. A karyotype showing the position and fluorescence intensity of several tandem repeat sequences is constructed. The establishment of this FISH-based karyotype has created the basis for the integration of molecular, genetic and cytogenetic maps in Cucumis sativus and for the ultimate genome sequencing project as well.
BackgroundRosa hybrida is a valuable ornamental, food and medicinal crop worldwide, but with relatively limited molecular marker resources, especially for flower-specific markers. In this study, we performed genomic and floral transcriptomic sequencing of modern rose. We obtained comprehensive nucleotide information, from which numerous potential simple sequence repeat (SSR) markers were identified but were found to have high rates of amplification failure and PCR product redundancy.ResultsWe applied a filtering strategy for BLAST analysis with the assembled genomic sequence and identified 124,591 genomic and 2,292 EST markers with unique annealing sites. These markers had much greater reliability than those obtained before filtering. Additional BLAST analysis against the transcriptomic sequences uncovered 5225 genomic SSRs associated with 4100 transcripts, 2138 of which were associated with functional genes that were annotated against the non-redundant database. More than 90% of these newly developed molecular markers were polymorphic, based on PCR using a subset of SSRs to analyze tetraploid modern rose accessions, diploid Rosa species and one strawberry accession. The relationships among Rosa species determined by cluster analysis (based on these results) were in agreement with modern rose breeding history, whereas strawberry was isolated in a separate cluster, as expected.ConclusionsOur results provide valuable molecular-genetic tools for rose flower trait improvement, breeding and taxonomy. Importantly, we describe a reproducible organ-specific strategy for molecular marker development and selection in plants, which can be applied to other crops.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1322-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.