A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases. G ENOME analysis has been used to establish the hexaploid wheat (Triticum aestivum L.). Each of the 21 evolutionary and homoeologous relationships of chromosomes has been identified and characterized by the three genomes (AA, BB, and DD) that make up Sears (1954Sears ( , 1966 with respect to genomic and homoeologous relationships. There is a high degree of colin-1 Present address: Plant Breeding and Acclimatization Institute,
BackgroundOne of the most popular ornamental plants worldwide, roses (Rosa sp.), are very susceptible to Botrytis gray mold disease. The necrotrophic infection of rose petals by B. cinerea causes the collapse and death of these tissues in both the growth and post-harvest stages, resulting in serious economic losses. To understand the molecular basis of rose resistance against B. cinerea, we profiled the petal transcriptome using RNA-Seq technology.ResultsWe identified differentially transcribed genes (DTGs) in petals during B. cinerea infection at 30 h post inoculation (hpi) and/or 48 hpi. Gene ontology term enrichment and pathway analyses revealed that metabolic, secondary metabolite biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were involved. The expression of 370 cell-surface immune receptors was upregulated during infection. In addition, 188 genes encoding transcription factors were upregulated, particularly in the ERF, WRKY, bHLH, MYB, and NAC families, implying their involvement in resistance against B. cinerea. We further identified 325 upregulated DTGs in the hormone signal transduction pathways. Among them, the brassinosteroid (BR)-related genes were the most significantly enriched. To confirm the role of BR in Botrytis resistance, exogenous BR was applied to rose flowers before the inoculation of B. cinerea, which enhanced the defense response in these petals.ConclusionsOur global transcriptome profiling provides insights into the complex gene regulatory networks mediating the rose petal response to B. cinerea. We further demonstrated the role of the phytohormone BR in the resistance of petals to necrotrophic fungal pathogens.Electronic supplementary materialThe online version of this article (10.1186/s12863-018-0668-x) contains supplementary material, which is available to authorized users.
BackgroundRosa hybrida is a valuable ornamental, food and medicinal crop worldwide, but with relatively limited molecular marker resources, especially for flower-specific markers. In this study, we performed genomic and floral transcriptomic sequencing of modern rose. We obtained comprehensive nucleotide information, from which numerous potential simple sequence repeat (SSR) markers were identified but were found to have high rates of amplification failure and PCR product redundancy.ResultsWe applied a filtering strategy for BLAST analysis with the assembled genomic sequence and identified 124,591 genomic and 2,292 EST markers with unique annealing sites. These markers had much greater reliability than those obtained before filtering. Additional BLAST analysis against the transcriptomic sequences uncovered 5225 genomic SSRs associated with 4100 transcripts, 2138 of which were associated with functional genes that were annotated against the non-redundant database. More than 90% of these newly developed molecular markers were polymorphic, based on PCR using a subset of SSRs to analyze tetraploid modern rose accessions, diploid Rosa species and one strawberry accession. The relationships among Rosa species determined by cluster analysis (based on these results) were in agreement with modern rose breeding history, whereas strawberry was isolated in a separate cluster, as expected.ConclusionsOur results provide valuable molecular-genetic tools for rose flower trait improvement, breeding and taxonomy. Importantly, we describe a reproducible organ-specific strategy for molecular marker development and selection in plants, which can be applied to other crops.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1322-5) contains supplementary material, which is available to authorized users.
Key message Rose has 19 MLO genes. Of these, RhMLO1 and RhMLO2 were shown to be required for powdery mildew infection, which suggests their potential as susceptibility targets towards disease resistance. Abstract Powdery mildew, caused by Podosphaera pannosa, is one of the most serious and widespread fungal diseases for roses, especially in greenhouse-grown cut roses. It has been shown that certain MLO genes are involved in powdery mildew susceptibility and that loss of function in these genes in various crops leads to broad-spectrum, long-lasting resistance against this fungal disease. For this reason, these MLO genes are called susceptibility genes. We carried out a genome-wide identification of the MLO gene family in the Rosa chinensis genome, and screened for allelic variants among 22 accessions from seven different Rosa species using re-sequencing and transcriptome data. We identified 19 MLO genes in rose, of which four are candidate genes for functional homologs in clade V, which is the clade containing all dicot MLO susceptibility genes. We detected a total of 198 different allelic variants in the set of Rosa species and accessions, corresponding to 5–15 different alleles for each of the genes. Some diploid Rosa species shared alleles with tetraploid rose cultivars, consistent with the notion that diploid species have contributed to the formation of tetraploid roses. Among the four RhMLO genes in clade V, we demonstrated using expression study, virus-induced gene silencing as well as transient RNAi silencing that two of them, RhMLO1 and RhMLO2, are required for infection by P. pannosa and suggest their potential as susceptibility targets for powdery mildew resistance breeding in rose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.