Abstract:Underwater cameras are widely used to observe the sea floor. They are usually included in autonomous underwater vehicles (AUVs), unmanned underwater vehicles (UUVs), and in situ ocean sensor networks. Despite being an important sensor for monitoring underwater scenes, there exist many issues with recent underwater camera sensors. Because of light's transportation characteristics in water and the biological activity at the sea floor, the acquired underwater images often suffer from scatters and large amounts of noise. Over the last five years, many methods have been proposed to overcome traditional underwater imaging problems. This paper aims to review the state-of-the-art techniques in underwater image processing by highlighting the contributions and challenges presented in over 40 papers. We present an overview of various underwater image-processing approaches, such as underwater image de-scattering, underwater image color restoration, and underwater image quality assessments. Finally, we summarize the future trends and challenges in designing and processing underwater imaging sensors.
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method to overcome these obstacles. State-of-the-art level set methods can segment objects well. However, such methods are time-consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re-initialization. To increase the speed of the algorithm further, we also include an additive operator-splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real-world images demonstrate the advantages of the proposed method over state-of-the-art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely.Recently, millions of patients are suffering from chronic wounds. The time-consuming wound assessments are not always feasible because of the high volume of patients. Consequently, accurate diagnosis and careful treatment will highly rely on expertise and experience. Advances in computer vision and artificial intelligence enable the analysis of wound images by big data and cloud computing. Big data is popular information and communication technologies paradigms. The big data-based approaches can be combined for directing the next generation of eHealth systems. However, because the imaging systems are difficult, the captured images have low quality, which
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.