The mechanical properties of biological cells, especially the elastic modulus and viscosity of cells, have been identified to reflect cell viability and cell states. The existing measuring techniques need additional equipment or operation condition. This paper presents a cell’s viscoelasticity measurement method based on the spheroidization process of non-spherical shaped cell. The viscoelasticity of porcine fetal fibroblast was measured. Firstly, we introduced the process of recording the spheroidization process of porcine fetal fibroblast. Secondly, we built the viscoelastic model for simulating a cell’s spheroidization process. Then, we simulated the spheroidization process of porcine fetal fibroblast and got the simulated spheroidization process. By identifying the parameters in the viscoelastic model, we got the elasticity (500 Pa) and viscosity (10 Pa·s) of porcine fetal fibroblast. The results showed that the magnitude of the elasticity and viscosity were in agreement with those measured by traditional method. To verify the accuracy of the proposed method, we imitated the spheroidization process with silicone oil, a kind of viscous and uniform liquid with determined viscosity. We did the silicone oil’s spheroidization experiment and simulated this process. The simulation results also fitted the experimental results well.
We experimentally demonstrate that a probe beam at one wavelength, although exhibiting a weak nonlinear response on its own, can be modulated and controlled by a pump beam at another wavelength in plasmonic nanosuspensions, leading to ring-shaped pattern generation. In particular, we show that the probe and pump wavelengths can be interchanged, but the hollow beam patterns appear only in the probe beam, thanks to the gold nanosuspensions that exhibit a strong nonlinear response to pump beam illumination at the plasmonic resonant frequencies. Colloidal suspensions consisting of either gold nanospheres or gold nanorods are employed as nonlinear media, which give rise to refractive index changes and cross-phase modulation between the two beams. We perform a series of experiments to examine the dynamics of hollow beam generation at a fixed probe power as the pump power is varied and find that nonlinear beam shaping has a different power threshold in different nanosuspensions. Our results will enhance the understanding of nonlinear light–matter interactions in plasmonic nanosuspensions, which may be useful for applications in controlling light by light and in optical limiting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.