ETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.
The body zinc clearance test was much more useful than serum zinc concentrations in diagnosing marginal zinc deficiency. Oral zinc supplementation improved the height velocity in short males, but not in short females.
Amorphous oxide semiconductors exhibit large electron mobilities; however, their bandgaps are either too large for solar cells or too small for deep ultraviolet applications depending on the materials system. Herein, we demonstrate that amorphous Cd–Ga–O semiconductors display bandgaps covering the entire 2.5–4.3 eV region while maintaining large electron mobilities ≥10 cm2 V−1 s−1. The band alignment diagram obtained by ultraviolet photoemission spectroscopy and the bandgap values reveal that these semiconductors form type-II heterojunctions with p-type Cu2O, which is suitable for solar cells and solar-blind ultraviolet sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.