One year moorings at depths greater than 3000 m on the continental slope off Vincennes Bay, East Antarctica, reveal the cold (<À0.5°C) and fresh (<34.64) signals of newly formed Antarctic Bottom Water (AABW). The signal appeared in June, 3 months after the onset of active sea-ice production in the nearby Vincennes Bay Polynya (VBP). The AABW signal continued for about 5 months at two moorings, with 1 month delay at the western site further downstream. Ship-based hydrographic data are in agreement, detecting the westward spread of new AABW over the continental slope from VBP. On the continental shelf, Dense Shelf Water (DSW) formation is observed by instrumented seals, in and around the VBP during autumn, and we estimate its transport to be 0. ). We conclude that the DSW formed in this region, albeit from a modest amount of sea-ice production, nonetheless contributes to the upper layer of AABW in Australian-Antarctic Basin.
The climatological structure of the subpolar cyclonic circulation off East Antarctica is delineated with Argo float data from the past decade. Up to 40% of the float profiles in the seasonal ice zone have been without satellite positioning. We refined their position data as following the bathymetry to get appropriate positions in the continental margin. The error of the terrain‐following interpolation was estimated by using positioned data to be 23 ± 27 (78 ± 70) km for 90 (390) day period. Profiles with the under‐ice period shorter than 360 days are adopted. The float trajectories reveal the extent of the subpolar gyre adjoined to the westward Antarctic Slope Current to its south and the southernmost eastward jet of the Antarctic Circumpolar Current along 4,000 m isobath to its north. The subpolar circulation in the Australian‐Antarctic Basin comprises of a series of quasi‐barotropic subgyre circulations, which are bounded by bathymetric spurs in the continental slope. The temperature field reveals shoreward excursions of Circumpolar Deep Water associated with the subgyres, effectively supplying heat to the continental shelves. An along‐slope temperature variation up to 1°C in 27.7–27.8 kg/m3 σθ indicates an active cross‐slope exchange within the layer. Provided the velocity field and the water mass structure, the subsurface water mass exchange is likely accomplished by a combination of topographically controlled mean flow and the eddy transports. Our findings suggest that the bathymetry primarily determines the structure of the subpolar gyre.
The generation of trapped and radiating internal tides around Izu-Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.