e agglomeration of nano-CaCO 3 (NC) is the largest bottleneck in applications in cementitious materials. If nano-CaCO 3 modifies the surface of micron-scale limestone powder (LS), then it will form nano-CaCO 3 /limestone composite particles (NC/LS). It is known that micron-scale limestone is easily dispersed, and the "dispersion" of NC is governed by that of LS.erefore, the dispersion of nano-CaCO 3 can be improved by the NC/LS in cementitious materials. In this work, the preparation of NC/LS was carried out in a three-necked flask using the Ca(OH) 2 -H 2 O-CO 2 reaction system. e morphology of NC/LS was observed by a field emission scanning electron microscope (FE-SEM). e effects of NC/LS on the hydration products and pore structure of cementitious materials are proposed. 5% NC/LS was added into cement paste and mortar, and the mechanical properties of the specimens were measured at a certain age. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TG), and backscattered electron imaging (BSE) were conducted on the specimens to investigate the hydration products and pore structure. e properties of specimens with NC/LS were compared to that of control specimens (without NC/LS). e results revealed that NC/LS reduced the porosity and improved the mechanical properties of the cementitious materials.
The mechanisms underlying the effects of nano-calcium carbonate (NC) on the strength of high volume fly ash (FA) mortar are discussed. Two NCs are used as 2%, 4%, 6%, and 8% by weight of cementitious materials. Hydrated products of fly ash mortar containing NC was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and differential thermal gravity (DTG) analysis. Results indicate that NC could improve strength of FA mortar due to the more rapid growth of hydrated products induced by NC through additional nucleation sites. Corresponding to the highest measured strength of FA mortar, the optimal contents of NC are around 2%. In addition, the presence of 2% NC improved the microstructure of FA mortar after 180 days due to the formation of calcium carbonaluminate hydrate.
The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.