Background: Diabetes-associated periodontitis (DPD) is an inflammatory and destructive disease of periodontal tissues in the diabetic population. The disease is manifested as more severe periodontal destruction and is more difficult to treat when compared with periodontitis (PD). Eldecalcitol (ELD) is a novel active vitamin D3 analog; however, little clinical evidence is available on its role on improving PD and DPD, and its specific mechanisms remain unclear. In this study, we evaluated the preventative effects of ELD toward PD and DPD and explored its underlying molecular mechanisms.Methods: Experimental PD and DPD mouse models were established by ligation combined with lipopolysaccharide (LPS) from Porphyromonas gingivalis injection in C57BL/6J and C57BLKS/J Iar- + Leprdb/+Leprdb (db/db) mice, respectively. Simultaneously, ELD (0.25 μg/kg) was orally administered to mice via an intragastric method. Micro-computed tomography (CT), hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), and tartrate-resistant acid phosphatase (TRAP) staining were used to evaluate alveolar bone alterations in vivo. Flow cytometry, immunofluorescence, and real-time polymerase chain reaction (qRT-PCR) were also used to examine gene expression and probe systemic and local changes in Treg and Th17 cell numbers. Additionally, western blotting and immunofluorescence staining were used to examine changes in STAT3/STAT5 signaling.Results: Micro-CT and HE staining showed that the DPD group had higher alveolar bone loss when compared with the PD group. After applying ELD, alveolar bone loss decreased significantly in both PD and DPD groups, and particularly evident in the DPD group. IHC and TRAP staining also showed that ELD promoted osteoblast activity while inhibiting the number of osteoclasts, and after ELD treatment, the receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) ratio decreased. More importantly, this decreasing trend was more obvious in the DPD group. Flow cytometry and qRT-PCR also showed that the systemic Th17/Treg imbalance in PD and DPD groups was partially resolved when animals were supplemented with ELD, while immunofluorescence staining and qRT-PCR data showed the Th17/Treg imbalance was partially resolved in the alveolar bone of both ELD supplemented groups. Western blotting and immunofluorescence staining showed increased p-STAT5 and decreased p-STAT3 levels after ELD application.Conclusion: ELD exerted preventative effects toward PD and DPD by partially rectifying Th17/Treg cell imbalance via STAT3/STAT5 signaling. More importantly, given the severity of DPD, we found ELD was more advantageous in preventing DPD.
Objective: Periostin is important for the maintenance of periodontal tissue, but its role in periodontitis is controversial. This research investigated the effect of periostin in periodontitis and the underlying mechanism. Design: Mouse periodontitis models in vivo and inflammation model in vitro which were induced by Porphyromonas gingivalis lipopolysaccharide were established to evaluate periostin expression. Human periodontal ligament fibroblasts (PDLFs) were treated with lipopolysaccharide and N-acetylcysteine, fluorescence staining, flow cytometry, Western blot, and qRT-PCR were used to detect reactive oxygen species (ROS), periostin expression, and apoptosis-related makers. The periostin gene was successfully transfected into PDLFs to verify the effect of periostin on apoptosis. Then, the Nrf2 inhibitor was added to clarify the mechanism. Results: Periostin expression decreased in the periodontal ligaments of mouse periodontitis models and lipopolysaccharide-induced PDLFs. Lipopolysaccharide promoted the activation of ROS and apoptosis in PDLFs, whereas N-acetylcysteine reversed this condition. Overexpression of periostin suppressed apoptosis of PDLFs and reversed the inhibitory effect of lipopolysaccharide on nuclear Nrf2 expression. Moreover, the Nrf2 inhibitor attenuated the protective effect of periostin on lipopolysaccharideinduced apoptosis. Conclusions: Lipopolysaccharide induced apoptosis in PDLFs by inhibiting periostin expression and thus Nrf2/HO-1 pathway, indicating that periostin could be a potential therapeutic target for periodontitis.
Objectives: This study aimed to clarify the regulatory role of Th17-Treg balance in periodontitis and further reveal Treg plasticity. Materials and Methods: An experimental periodontitis model was established by ligation and injection of Pg-LPS. Inflammatory factors were measured by ELISA and RT-PCR. Alveolar bone absorption was evaluated by micro-CT and histomorphology. Quantities of Treg and Th17 cell and their related gene expression were examined. Furthermore, after magnetic bead-sorting spleen Treg cells, Treg/Th17 characteristic genes were explored. Immunofluorescence double staining of Foxp3 and IL-17 was conducted to further reveal Treg plasticity.Results: Inflammatory cytokines in serum and gingival tissue increased significantly in periodontitis, which revealed obvious crestal bone loss. Further analysis showed that the number of Th17 cells and expression of related genes increased more significantly than Treg cells, demonstrating Treg-Th17 imbalance. Flow cytometry showed that the proportions of Treg cells in the blood and spleen were lower in periodontitis group. Furthermore, Foxp3 was downregulated, and Rorc/ IL-17A were increased in Treg cells of periodontitis group. Immunofluorescence double staining showed significantly increased number of IL-17+Foxp3+ cells in periodontitis. Conclusions:These results provided evidence that Treg cells showed characteristics of Th17 cells in mice with periodontitis, although its mechanisms require further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.