Female fertility irreversibly declines with aging, and this is primarily associated with the decreased quality and quantity of oocytes. To evaluate whether a long‐term of melatonin treatment would improve the fertility of aged mice, different concentrations of melatonin (10−3, 10−5, 10−7 mol/L) were supplemented into drinking water. Melatonin treatments improved the litter sizes of mice at the age of 24 weeks. Mice treated with 10−5 mol/L melatonin had the largest litter size among other concentrations. At this optimal concentration, melatonin not only significantly increased the total number of oocytes but also their quality, having more oocytes with normal morphology that could generate more blastocyst after in vitro fertilization in melatonin (10−5 mol/L)‐treated group than that in the controls. When these blastocysts were transferred to recipients, the litter size was also significantly larger in melatonin treated mice than that in controls. The increases in TAOC and SOD level and decreases in MDA were detected in ovaries and uterus from melatonin‐treated mice compared to the controls. Melatonin reduced ROS level and maintained mitochondrial membrane potential in the oocytes cultured in vitro. Mechanistically studies revealed that the beneficial effects of melatonin on oocytes were mediated by MT1 receptor and AMPK pathway. Thereafter, MT1 knocking out (MT1‐KO) were generated and shown significantly reduced number of oocytes and litter size. The expression of SIRT1, C‐myc, and CHOP were downregulated in the ovary of MT1‐KO mice, but SIRT1 and p‐NF‐kB protein level were elevated in response to disturbed redox balance. The results have convincingly proven that melatonin administration delays ovary aging and improves fertility in mice via MT1/AMPK pathway.
Background: Cirrhosis is a common chronic liver disease characterized by irreversible diffuse liver damage. Intestinal microbiome dysbiosis and metabolite dysfunction contribute to the development of cirrhosis. Lactitol (4-β-D-galactopyranosyl-D-glucitol) was previously reported to promote the growth of intestinal Bifidobacteria. However, the effect of lactitol on the intestinal microbiome and fecal short-chain fatty acids (SCFAs) and bile acids (BAs) and the interactions among these factors in cirrhotic patients pre- and post-lactitol treatment remain poorly understood.Methods: Here, using shotgun metagenomics and targeted metabolomics methods.Results: we found that health-promoting lactic acid bacteria, including Bifidobacterium longum, B.pseudocatenulatum, and Lactobacillus salivarius, were increased after lactitol intervention, and significant decrease of pathogen Klebsiella pneumonia and associated antibiotic resistant genes /virulence factors. Functionally, pathways including Pseudomonas aeruginosa biofilm formation, endotoxin biosynthesis, and horizontal transfer of pathogenic genes were decreased in cirrhotic patients after 4-week lactitol intervention compared with before treatment.Conclusion: We identified lactitol-associated metagenomic changes, and provide insight into the understanding of the roles of lactitol in modulating gut microbiome in cirrhotic patients.
Flexible perovskite solar cells (PSCs) have received increasing attention in wearable and portable devices over the past ten years. The low-temperature process of electron transport layer plays a key role in fabricating flexible PSCs. In this paper, we improve the performance of flexible PSCs by controlling the thermodynamic procedure in the low-temperature annealing process of solution-processed TiO2 layers and modulating the precursor concentration of (6,6)-phenyl c61 butyric acid methyl ester (PC61BM) deposited on fluorine-doped tin oxide (FTO)/TiO2 substrate. The results show that slowing down evaporation rate of residual solvent and adopting PC61BM of appropriate precursor concentration are confirmed to be effective methods to improve the performance of flexible PSCs. We also demonstrate carbon electrode-based flexible PSCs. Our work expands the feasibility of low temperature process for the development of flexible perovskite photodetectors and light-emitting diodes, as well as flexible PSCs.
Melatonin is a pleiotropic molecule with a variety of biological functions, which include its immunoregulatory action in mammals. Brucellosis is a worldwide endemic zoonotic disease caused by the Brucella, which not only causes huge economic losses for the livestock industry but also impacts human health. To target this problem, in current study, two marker‐free transgenic sheep overexpressing melatonin synthetic enzyme ASMT (acetylserotonin O‐methyltransferase) gene were generated and these melatonin enrich transgenic sheep were challenged by Brucella infection. The results showed that the serum melatonin concentration was significantly higher in transgenic sheep than that of wild type (726.92 ± 70.6074 vs 263.10 ± 34.60 pg/mL, P < .05). Brucella challenge test showed that two thirds (4/6) of the wild‐type sheep had brucellosis, while none of the transgenic sheep were infected. Whole‐blood RNA‐seq results showed that differential expression genes (DEGs) were significantly enriched in natural killer cell‐mediated cytotoxicity, phagosome, antigen processing, and presentation signaling pathways in overexpression sheep. The DEGs of toll‐like receptors (TLRs) and NOD‐like receptors (NLRs) families were verified by qPCR and it showed that TLR1, TLR2, TLR7, CD14, NAIP, and CXCL8 expression levels in overexpression sheep were significantly higher and NLRP1, NLRP3, and TNF expression levels were significantly lower than those of wild type. The rectal feces were subjected to 16S rDNA amplicon sequencing, and the microbial functional analysis showed that the transgenic sheep had significantly lower abundance of microbial genes related to infectious diseases compared to the wild type, indicating overexpression animals are likely more resistant to infectious diseases than wild type. Furthermore, exogenous melatonin treatment relieved brucellosis inflammation by upregulating anti‐inflammatory cytokines IL‐4 and downregulating pro‐inflammatory IL‐2, IL‐6, and IFN‐γ. Our preliminary results provide an informative reference for the study of the relationship between melatonin and brucellosis.
High myopia is one of the leading causes of visual impairment worldwide with high heritability. We have previously identified the genetic contribution of SLC39A5 to nonsyndromic high myopia and demonstrated that disease‐related mutations of SLC39A5 dysregulate the TGF‐β pathway. In this study, the mechanisms underlying SLC39A5 involvement in the pathogenesis of high myopia are determined. We observed the morphogenesis and migration abnormalities of the SLC39A5 knockout (KO) human embryonic kidney cells (HEK293) and found a significant injury of ECM constituents. RNA‐seq and qRT‐PCR revealed the transcription decrease in COL1A1, COL2A1, COL4A1, FN1 and LAMA1 in the KO cells. Further, we demonstrated that TGF‐β signalling, the regulator of ECM, was inhibited in SLC39A5 depletion situation, wherein the activation of receptor Smads (R‐Smads) via phosphorylation was greatly blocked. SLC39A5 re‐expression reversed the phenotype of TGF‐β signalling and ECM synthesis in the KO cells. The fact that TGF‐β signalling was zinc‐regulated and that SLC39A5 was identified as a zinc transporter urged us to check the involvement of intracellular zinc in TGF‐β signalling impairment. Finally, we determined that insufficient zinc chelation destabilized Smad proteins, which naturally inhibited TGF‐β signalling. Overall, the SLC39A5 depletion–induced zinc deficiency destabilized Smad proteins, which inhibited the TGF‐β signalling and downstream ECM synthesis, thus contributing to the pathogenesis of high myopia. This discovery provides a deep insight into myopic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.