Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer. It combines the excellent phase stability of coherent high-harmonic sources, the unique chemical sensitivity of extreme ultraviolet reflectometry, and state-of-the-art ptychography imaging algorithms. This tabletop microscope can nondestructively probe surface topography, layer thicknesses, and interface quality, as well as dopant concentrations and profiles. High-fidelity imaging was achieved by implementing variable-angle ptychographic imaging, by using total variation regularization to mitigate noise and artifacts in the reconstructed image, and by using a high-brightness, high-harmonic source with excellent intensity and wavefront stability. We validate our measurements through multiscale, multimodal imaging to show that this technique has unique advantages compared with other techniques based on electron and scanning probe microscopies.
We experimentally demonstrate that ptychographic coherent diffractive imaging can be used to simultaneously characterize the amplitude and phase of bichromatic orbital angular momenta-shaped vortex beams, which consist of a fundamental field, together with its copropagating second-harmonic field. In contrast to most other orbital angular momentum characterization methods, this approach solves for the complex field of a hyperspectral beam. This technique can also be used to characterize other phase-structured illumination beams, and, in the future, will be able to be extended to other complex fields in the extreme ultraviolet or X-ray spectral regions, as well as to matter waves.
Defect inspection on lithographic substrates, masks, reticles, and wafers is an important quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry (CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely used as an in-line inspection tool to achieve high throughput. As the semiconductor industry advances toward shrinking critical dimensions in high volume manufacturing using extreme ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line inspection are critically needed. Here we introduce a set of novel defect inspection techniques based on bright-field CFS using coherent beams that carry orbital angular momentum (OAM). One of these techniques, the differential OAM CFS, is particularly unique because it does not rely on referencing to a pre-established database in the case of regularly patterned structures with reflection symmetry. The differential OAM CFS exploits OAM beams with opposite wavefront or phase helicity to provide contrast in the presence of detects. We numerically investigated the performance of these techniques on both amplitude and phase defects and demonstrated their superior advantages—up to an order of magnitude higher in signal-to-noise ratio—over the conventional Gaussian beam CFS. These new techniques will enable increased sensitivity and robustness for in-line nanoscale defect inspection and the concept could also benefit x-ray scattering and scatterometry in general.
Nanostructuring on length scales corresponding to phonon mean free paths provides control over heat flow in semiconductors and makes it possible to engineer their thermal properties. However, the influence of boundaries limits the validity of bulk models, while first-principles calculations are too computationally expensive to model real devices. Here we use extreme ultraviolet beams to study phonon transport dynamics in a 3D nanostructured silicon metalattice with deep nanoscale feature size and observe dramatically reduced thermal conductivity relative to bulk. To explain this behavior, we develop a predictive theory wherein thermal conduction separates into a geometric permeability component and an intrinsic viscous contribution, arising from a new and universal effect of nanoscale confinement on phonon flow. Using experiments and atomistic simulations, we show that our theory applies to a general set of highly confined silicon nanosystems, from metalattices, nanomeshes, porous nanowires, to nanowire networks, of great interest for next-generation energy-efficient devices.
As EUV lithography transitions to high volume manufacturing, actinic inspection tools at 13.5 nm wavelength are attractive for understanding the printability of EUV mask defects, as well as for in-fab monitoring for possible defects emerging from extended use. Coherent diffractive imaging (CDI) is a lensless imaging technique that allows for phaseand-amplitude, aberration-free, high-resolution imaging in the EUV. Moreover, sources based on high harmonic generation (HHG) of ultrafast lasers are a proven viable coherent light source for CDI, with flux sufficient for rapid large-area inspection and small-area imaging. By combining CDI and HHG, we implemented actinic EUV photomask inspection on a low-cost tabletop-scale setup. Moreover, we propose and demonstrate a solution to the challenge of ptychographic imaging of periodic structures through careful illumination engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.