Emerging evidence is revealing that exosomes contribute to many aspects of physiology and disease through intercellular communication. However, the biological roles of exosome secretion in exosome-secreting cells have remained largely unexplored. Here we show that exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells. The inhibition of exosome secretion results in the accumulation of nuclear DNA in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery. This event provokes the innate immune response, leading to reactive oxygen species (ROS)-dependent DNA damage response and thus induce senescence-like cell-cycle arrest or apoptosis in normal human cells. These results, in conjunction with observations that exosomes contain various lengths of chromosomal DNA fragments, indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells. Together, these findings enhance our understanding of exosome biology, and provide valuable new insights into the control of cellular homeostasis.
The p16INK4a tumour suppressor has an established role in the implementation of cellular senescence in stem/progenitor cells, which is thought to contribute to organismal ageing. However, since p16INK4a knockout mice die prematurely from cancer, whether p16INK4a reduces longevity remains unclear. Here we show that, in mutant mice homozygous for a hypomorphic allele of the α-klotho ageing-suppressor gene (klkl/kl), accelerated ageing phenotypes are rescued by p16INK4a ablation. Surprisingly, this is due to the restoration of α-klotho expression in klkl/kl mice and does not occur when p16INK4a is ablated in α-klotho knockout mice (kl−/−), suggesting that p16INK4a is an upstream regulator of α-klotho expression. Indeed, p16INK4a represses α-klotho promoter activity by blocking the functions of E2Fs. These results, together with the observation that the expression levels of p16INK4a are inversely correlated with those of α-klotho throughout ageing, indicate that p16INK4a plays a previously unrecognized role in downregulating α-klotho expression during ageing.
This Article contains errors in Fig. 4. In panel d, the lanes of the western blot should have been labeled ‘1.05’,‘1.06, ‘1.09’, ‘1.11’ ‘1.13’, ‘1.16’, ‘1.19’, ‘1.22’, ‘1.24’, ‘1.25’. The correct version of Figure 4 appears in the associated Publisher Correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.