-Emphysema can be induced in animals by postnatal treatment with dexamethasone (Dex) and such models have been widely used for various research. However, it is not clear what are the effects of Dex on assembly of alveolar elastic fibers in the emphysema model in mice. This study compared the expression profile of genes related to alveolar development between Dex treated and control mice during the treatment from postnatal day 3 (P3) to P14 with a 2-day break. From morphological observation of lung sections on P42, we confirmed the induction of emphysema in the treated mice. The mRNA expression level of fibrillin-1, which consists of microfibrils as a scaffold to form elastic fibers, and fibulin-5, which is a key protein reinforcing the fibers, reached maximum on P7 in control mice. However, in the Dex group, expression levels both types of mRNA were much lower with no clear expression peak. On the other hand, mRNA expression of tropoelastin, the main component in elastic fibers, reached maximum on P5 in the Dex group, which was 9 days earlier than in the control group. At this time, the amount of microfibrils might not be enough for tropoelastin to be deposited completely in Dex treated mice. This imbalance in the expression of tropoelastin and microfibril might interfere with the efficient formation of elastic fibers.
During the past two decades, it has been reported that treatment with all-trans-retinoic acid (ATRA) induces alveolar regeneration in rodent emphysema models. In the present study, we investigated the regeneration by ATRA at various exposure conditions in two strains of mice with induced emphysema. The emphysema model was created by postnatal administration of dexamethasone to ICR and FVB mice, which were then treated with ATRA from postnatal day 42. The regeneration was observed in ICR mice but not in FVB mice given 10 and 40 mg/kg/d ATRA for 10 d. The concentration-time profiles of ATRA in plasma and lung were similar in both strains. These results suggest that the strain difference in the regeneration by ATRA was not caused by differences in the exposure to ATRA. On the other hand, the regeneration in ICR mice was enhanced by an increase of the intraperitoneal dose in the range of 10-40 mg/kg/d for 10 d. At an intraperitoneal dose of 40 mg/kg/d, the regeneration was observed after 10 and 20 d of treatment but not after 1 to 5 d of treatment. Meanwhile, the regeneration by intraperitoneal administration of ATRA was enhanced more than that by oral administration. Exposure to ATRA during repeated intraperitoneal administration to ICR mice was higher than that in oral administration. The results suggest that the regeneration in ICR mice requires at least 10 d of treatment with ATRA and its effects depend on the exposure to ATRA in plasma, which parallels that in lung.
Dimethyl sulfoxide (DMSO) has been used not only as an experimental solvent, but also as a therapeutic agent for interstitial cystitis. The therapeutic effects of DMSO on interstitial cystitis are presumed to involve anti-inflammatory and analgesic effects. However, the effects of DMSO on urinary bladder smooth muscle (UBSM) have not been fully investigated. Thus, in this study, we investigated the effects of DMSO on rat UBSM contractions, and these effects were compared with those of acetone, which has a structure in which the sulfur of DMSO is replaced with carbon. DMSO (0.5-5%) enhanced acetylcholine (ACh)-induced contractions, whereas acetone (3 and 5%) suppressed them. Additionally, DMSO (5%) suppressed carbacholinduced contractions. DMSO/acetone (0.5-5%) inhibited 80 mM KCl-induced contractions in a concentration-dependent manner; however, the inhibitory effects of DMSO were weaker than those of acetone. The enhancing/suppressing effects of DMSO and acetone were almost completely abolished by wash out. DMSO and acetone (0.5-5%) inhibited recombinant human acetylcholinesterase (rhAChE) activity in a concentration-dependent manner. At 0.5 and 1%, the inhibitory effects of DMSO on rhAChE activity were more potent than those of acetone. These findings suggest that DMSO can enhance ACh-induced UBSM contractions and promote urinary bladder motility by inhibiting acetylcholinesterase (AChE), although DMSO also inhibits Ca 2 influx-mediated UBSM contractions. In addition, the sulfur atom in DMSO might play an important role in its enhancing effect on ACh-induced contractions by inhibiting AChE, as acetone did not enhance these contractions.
The clinical applications of antipsychotics for symptoms unrelated to schizophrenia, such as behavioral and psychological symptoms, in patients with Alzheimer's disease, and the likelihood of doctors prescribing antipsychotics for elderly people are increasing. In elderly people, drug-induced and aging-associated urinary disorders are likely to occur. The most significant factor causing drug-induced urinary disorders is a decrease in urinary bladder smooth muscle (UBSM) contraction induced by the anticholinergic action of therapeutics. However, the anticholinergic action-associated inhibitory effects of antipsychotics on UBSM contraction have not been sufficiently assessed. In this study, we examined 26 clinically available antipsychotics to determine the extent to which they inhibit acetylcholine (ACh)-induced contraction in rat UBSM to predict the drugs that should not be used by elderly people to avoid urinary disorders. Of the 26 antipsychotics, six (chlorpromazine, levomepromazine (phenothiazines), zotepine (a thiepine), olanzapine, quetiapine, clozapine (multi-acting receptor targeted antipsychotics (MARTAs))) competitively inhibited ACh-induced contractions at concentrations corresponding to clinically significant doses. Further, 11 antipsychotics (perphenazine, fluphenazine, prochlorperazine (phenothiazines), haloperidol, bromperidol, timiperone, spiperone (butyrophenones), pimozide (a diphenylbutylpiperidine), perospirone, blonanserin (serotonin-dopamine antagonists; SDAs), and asenapine (a MARTA)) significantly suppressed ACh-induced contraction; however, suppression occurred at concentrations substantially exceeding clinically achievable blood levels. The remaining nine antipsychotics (pipamperone (a butyrophenone), sulpiride, sultopride, tiapride, nemonapride (benzamides), risperidone, paliperidone (SDAs), aripiprazole, and brexpiprazole (dopamine partial agonists)) did not inhibit ACh-induced contractions at concentrations up to 10 5 M. These findings suggest that chlorpromazine, levomepromazine, zotepine, olanzapine, quetiapine, and clozapine should be avoided by elderly people with urinary disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.