The dasD gene is located just downstream of the dasABC gene cluster, encoding components of an ABC transporter for uptake of a chitin-degradation product N,N'-diacetylchitobiose [(GlcNAc)(2) ] in Streptomyces coelicolor A3(2). To clarify the roles of the DasD protein in the degradation and assimilation of chitin, we obtained and characterized a recombinant DasD protein and a dasD-null mutant of S. coelicolor A3(2). The recombinant DasD protein produced in Escherichia coli showed N-acetyl-β-d-glucosaminidase (GlcNAcase) activity and its optimum temperature and pH were 40 °C and 7, respectively. dasD transcription was strongly induced in the presence of chitin, weakly by chitosan, but not by cellulose or xylan in S. coelicolor A3(2). Immuno-blot analysis demonstrated that DasD is a cytoplasmic protein. The dasD-null mutant exhibited cellular GlcNAcase activity which was comparable with that of the parent strain M145. DasD, thus, did not seem to be a major GlcNAcase. Induced extracellular chitinase activity in the dasD-null mutant was, interestingly, higher than M145, in the presence of colloidal chitin or (GlcNAc)(2) . In contrast to M145, (GlcNAc)(2) temporally accumulated in the culture supernatant of the dasD-null mutant in the presence of colloidal chitin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.