The ezrin-radixin-moesin (ERM) family of proteins crosslink actin filaments and integral membrane proteins. Radixin (encoded by Rdx) is the dominant ERM protein in the liver of wildtype mice and is concentrated at bile canalicular membranes (BCMs). Here we show that Rdx(-/-) mice are normal at birth, but their serum concentrations of conjugated bilirubin begin to increase gradually around 4 weeks, and they show mild liver injury after 8 weeks. This phenotype is similar to human conjugated hyperbilirubinemia in Dubin-Johnson syndrome, which is caused by mutations in the multidrug resistance protein 2 (MRP2, gene symbol ABCC2), although this syndrome is not associated with overt liver injury. In wildtype mice, Mrp2 concentrates at BCMs to secrete conjugated bilirubin into bile. In the BCMs of Rdx(-/-) mice, Mrp2 is decreased compared with other BCM proteins such as dipeptidyl peptidase IV (CD26) and P-glycoproteins. In vitro binding studies show that radixin associates directly with the carboxy-terminal cytoplasmic domain of human MRP2. These findings indicate that radixin is required for secretion of conjugated bilirubin through its support of Mrp2 localization at BCMs.
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ~90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
The major structure of the low sulfated irregular region of porcine intestinal heparin was investigated by characterizing the hexasaccharide fraction prepared by extensive digestion of the highly sulfated region with Flavobacterium heparinase and subsequent size fractionation by gel chromatography. Structures of a tetrasaccharide, a pentasaccharide, and eight hexasaccharide components in this fraction, which accounted for approximately 19% (w/w) of the starting heparin representing the major oligosaccharide fraction derived from the irregular region, were determined by chemical and enzymatic analyses as well as 1 H NMR spectroscopy. Five compounds including one penta-and four hexasaccharides had hitherto unreported structures. The structure of the pentasaccharide with a glucuronic acid at the reducing terminus was assumed to be derived from the reducing terminus of a heparin glycosaminoglycan chain and may represent the reducing terminus exposed by a tissue endo--glucuronidase involved in the intracellular post-synthetic fragmentation of macromolecular heparin. Eight out of the 10 isolated oligosaccharides shared the trisaccharide sequence, -4IdceA␣1-4Glc-NAc␣1-4GlcA1-, and its reverse sequence, -4GlcA1-4GlcNAc␣1-4IdceA␣1-, was not found. The latter has not been reported to date for heparin/heparan sulfate, indicating the substrate specificity of the D-glucuronyl C-5 epimerase. Furthermore, seven hexasaccharides shared the common trisulfated hexasaccharide core sequence ⌬HexA(2-sulfate) ␣1-4GlcN(N-sulfate)␣1-4IdceA␣1-4Gl-cNAc␣1-4GlcA1-4GlcN(N-sulfate)
Porcine intestinal heparin was extensively digested with Flavobacterium heparinase and size-fractionated by gel chromatography. Subfractionation of the hexasaccharide fraction by anion exchange high pressure liquid chromatography yielded 10 fractions. Six contained oligosaccharides derived from the repeating disaccharide region, whereas four contained glycoserines from the glycosaminoglycan-protein linkage region. The latter structures were reported recently (Sugahara, K., Tsuda, H., Yoshida, K., Yamada, S., de Beer, T., and Vliegenthart, J.F.G. (1995) J. Biol. Chem. 270, 22914-22923). In this study, the structures of one tetra- and five hexasaccharides from the repeat region were determined by chemical and enzymatic analyses as well as 500-MHz 1H NMR spectroscopy. The tetrasaccharide has the hexasulfated structure typical of heparin. The five hexa- or heptasulfated hexasaccharides share the common core pentasulfated structure delta HexA(2S) alpha 1-4GlcN-(NS, 6S) alpha 1-4IdoA alpha/GlcA beta 1-4GlcN(6S) alpha 1-4GlcA beta 1-4GlcN (NS) with one or two additional sulfate groups (delta HexA, GlcN, IdoA, and GlcA represent 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid, D-glucosamine, L-iduronic acid, and D-glucuronic acid, whereas 2S, 6S and NS stand for 2-O-, 6-O-, and 2-N-sulfate, respectively). Three components have the following hitherto unreported structures: delta HexA(2S) alpha 1-4GlcN(NS, 6S) alpha 1-4GlcA beta 1-4GlcN(NS, 6S) alpha 1-4GlcA beta 1-4GlcN(NS,6S), delta HexA(2S) alpha 1-4GlcN(NS, 6S) alpha 1-4IdoA alpha 1-4GlcNAc(6S)-alpha 1-4GlcA beta 1-4GlcN(NS, 3S), and delta HexA(2S) alpha 1-4GlcN-(NS,6S) alpha 1-4IdoA (2S) alpha 1-4GlcNAc(6S) alpha 1-4GlcA beta 1-4GlcN(NS, 6S). Two of the five hexasaccharides are structural variants derived from the antithrombin III-binding sites containing 3-O-sulfated GlcN at the reducing termini with or without a 6-O-sulfate group on the reducing N,3-disulfated GlcN residue. Another contains the structure identical to that of the above heptasulfated antithrombin III-binding site fragment but lacks the 3-O-sulfate group and therefore is a pro-form for the binding site. Another has an extra sulfate group on the internal IdoA residue of this pro-form and therefore can be considered to have diverged from the binding site in the biosynthetic pathway. Thus, the isolated hexasacharides in this study include the three overlapping pairs of structural variants with an apparent biosynthetic precursor-product relationship, which may reflect biosynthetic regulatory mechanisms of the binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.