Cucumber mosaic virus (CMV) causes mosaic disease in inoculated tobacco plants. Coat protein (CP) is one of the major virulence determinants of CMV, and an amino acid substitution at residue 129 in CP alters the severity of chlorosis, such as pale green chlorosis and white chlorosis, in symptomatic tissues of mosaic leaves of infected tobacco. In this study, we compared the transcriptomes of chlorotic tissues infected with the wild-type pepo strain of CMV and two strains carrying CP mutants with diverse chlorosis severity. Differential gene expression analysis showed that CMV inoculation appeared to have similar effects on the transcriptional expression profiles of the symptomatic chlorotic tissues, and only the magnitude of expression differed among the different CMVs. Gene ontology analysis with biological process and cellular component terms revealed that many nuclear genes related to abiotic stress responses, including responses to cadmium, heat, cold and salt, were up-regulated, whereas chloroplast- and photosynthesis-related genes (CPRGs) were down-regulated, in the chlorotic tissues. Interestingly, the level of CPRG down-regulation was correlated with the severity of chlorosis. These results indicate that CP mutation governs the repression level and mRNA accumulation of CPRGs, which are closely associated with the induction of chlorosis.
BackgroundIntertumoral heterogeneity represents a significant hurdle to identifying optimized targeted therapies in gastric cancer (GC). To realize precision medicine for GC patients, an actionable gene alteration-based molecular classification that directly associates GCs with targeted therapies is needed.MethodsA total of 207 Japanese patients with GC were included in this study. Formalin-fixed, paraffin-embedded (FFPE) tumor tissues were obtained from surgical or biopsy specimens and were subjected to DNA extraction. We generated comprehensive genomic profiling data using a 435-gene panel including 69 actionable genes paired with US Food and Drug Administration-approved targeted therapies, and the evaluation of Epstein-Barr virus (EBV) infection and microsatellite instability (MSI) status.ResultsComprehensive genomic sequencing detected at least one alteration of 435 cancer-related genes in 194 GCs (93.7%) and of 69 actionable genes in 141 GCs (68.1%). We classified the 207 GCs into four The Cancer Genome Atlas (TCGA) subtypes using the genomic profiling data; EBV (N = 9), MSI (N = 17), chromosomal instability (N = 119), and genomically stable subtype (N = 62). Actionable gene alterations were not specific and were widely observed throughout all TCGA subtypes. To discover a novel classification which more precisely selects candidates for targeted therapies, 207 GCs were classified using hypermutated phenotype and the mutation profile of 69 actionable genes. We identified a hypermutated group (N = 32), while the others (N = 175) were sub-divided into six clusters including five with actionable gene alterations: ERBB2 (N = 25), CDKN2A, and CDKN2B (N = 10), KRAS (N = 10), BRCA2 (N = 9), and ATM cluster (N = 12). The clinical utility of this classification was demonstrated by a case of unresectable GC with a remarkable response to anti-HER2 therapy in the ERBB2 cluster.ConclusionsThis actionable gene-based classification creates a framework for further studies for realizing precision medicine in GC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-017-0484-3) contains supplementary material, which is available to authorized users.
The cystine-glutamate antiporter subunit xCT suppresses iron-dependent oxidative cell death (ferroptosis) and is therefore a promising target for cancer treatment. Given that cancer cells often show resistance to xCT inhibition resulting in glutathione (GSH) deficiency, however, we here performed a synthetic lethal screen of a drug library to identify agents that sensitize the GSH deficiency-resistant cancer cells to the xCT inhibitor sulfasalazine. This screen identified the oral anesthetic dyclonine which has been recently reported to act as a covalent inhibitor for aldehyde dehydrogenases (ALDHs). Treatment with dyclonine induced intracellular accumulation of the toxic aldehyde 4-hydroxynonenal in a cooperative manner with sulfasalazine. Sulfasalazine-resistant head and neck squamous cell carcinoma (HNSCC) cells were found to highly express ALDH3A1 and knockdown of ALDH3A1 rendered these cells sensitive to sulfasalazine. The combination of dyclonine and sulfasalazine cooperatively suppressed the growth of highly ALDH3A1-expressing HNSCC or gastric tumors that were resistant to sulfasalazine monotherapy. Our findings establish a rationale for application of dyclonine as a sensitizer to xCT-targeted cancer therapy.
Choosing an option increases a person’s preference for that option. This phenomenon, called choice-based learning (CBL), has been investigated separately in the contexts of internally guided decision-making (IDM, e.g., preference judgment), for which no objectively correct answer exists, and externally guided decision making (EDM, e.g., perceptual decision making), for which one objectively correct answer exists. For the present study, we compared decision making of these two types to examine differences of underlying neural processes of CBL. As IDM and EDM tasks, occupation preference judgment and salary judgment were used, respectively. To compare CBL for the two types of decision making, we developed a novel measurement of CBL: decision consistency. When CBL occurs, decision consistency is higher in the last-half trials than in first-half trials. Electroencephalography (EEG) data have demonstrated that the change of decision consistency is positively correlated with the fronto-central beta–gamma power after response in the first-half trials for IDM, but not for EDM. Those results demonstrate for the first time the difference of CBL between IDM and EDM. The fronto-central beta–gamma power is expected to reflect a key process of CBL, specifically for IDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.