Supplemental digital content is available in the text.
The biarticular triceps brachii long head (TB Long ) is lengthened more in the overhead than neutral arm position. We compared triceps brachii hypertrophy after elbow extension training performed in the overhead vs. neutral arm position. Using a cable machine, 21 adults conducted elbow extensions (90−0°) with one arm in the overhead (Overhead-Arm) and the other arm in the neutral (Neutral-Arm) position at 70% one-repetition maximum (1RM), 10 reps/set, 5 sets/ session, 2 sessions/week for 12 weeks. Training load was gradually increased (+5% 1RM/session) when the preceding session was completed without repetition failure. 1RM of the assigned condition and MRI-measured muscle volume of the TB Long , monoarticular lateral and medial heads (TB Lat+Med ), and whole triceps brachii (Whole-TB) were assessed pre-and post-training. Training load and 1RM increased in both arms similarly (+62−71% at post, P = 0.285), while their absolute values/weights were always lower in Overhead-Arm (-34−39%, P < 0.001). Changes in muscle volume in Overhead-Arm compared to Neutral-Arm were 1.5-fold greater for the TB Long (+28.5% vs. +19.6%, Cohen's d = 0.61, P < 0.001), 1.4-fold greater for the TB Lat+Med (+14.6% vs. +10.5%, d = 0.39, P = 0.002), and 1.4-fold greater for the Whole-TB (+19.9% vs. +13.9%, d = 0.54, P < 0.001). In conclusion, triceps brachii hypertrophy was substantially greater after elbow extension training performed in the overhead versus neutral arm position, even with lower absolute loads used during the training. Highlights. Growing evidence suggests that resistance training at long muscle lengths promotes muscle hypertrophy, but its practical applications are yet to be explored. . Triceps brachii muscle hypertrophy was substantially greater after cable elbow extension training performed in the overhead than neutral arm position, particularly in the biarticular triceps brachii long head, even with lower absolute loads lifted (i.e. lower mechanical stress to muscles/joints). . Cable elbow extension training should be performed in the overhead rather than neutral arm position if one aims to maximise muscle hypertrophy of the triceps brachii or to prevent atrophy of this muscle.
Background The size of the plantar intrinsic and extrinsic foot muscles has been shown to be associated with toe flexor strength (TFS). Previous studies adopted the size of limited plantar intrinsic foot muscles or a compartment containing several muscles as an independent variable for TFS. Among the plantar intrinsic and extrinsic foot muscles, therefore, it is unclear which muscle(s) primarily contributes to TFS production. The present study aimed to clarify this subject. Methods In 17 young adult men, a series of anatomical cross-sectional area of individual plantar intrinsic and extrinsic foot muscles was obtained along the foot length and the lower leg length, respectively, using magnetic resonance imaging. Maximal anatomical cross-sectional area (ACSAmax) and muscle volume (MV) for each constituent muscle of the plantar intrinsic foot muscles (flexor hallucis brevis; flexor digitorum brevis, FDB; abductor hallucis; adductor hallucis oblique head, ADDH-OH; adductor hallucis transverse head, ADDH-TH; abductor digiti minimi; quadratus plantae) and extrinsic foot muscles (flexor hallucis longus; flexor digitorum longus) were measured. TFS was measured with a toe grip dynamometry. Results TFS was significantly associated with the ACSAmax for each of the ADDH-OH (r = 0.674, p = 0.003), ADDH-TH (r = 0.523, p = 0.031), and FDB (r = 0.492, p = 0.045), and the MV of the ADDH-OH (r = 0.582, p = 0.014). As for the ADDH-OH, the correlation coefficient with TFS was not statistically different between ACSAmax and MV (p = 0.189). Stepwise multiple linear regression analysis indicated that ACSAmax and MV of the ADDH-OH alone explained 42 and 29%, respectively, of the variance in TFS. Conclusion The ADDH-OH is the primary contributor to TFS production among the plantar intrinsic and extrinsic foot muscles as the result of the stepwise multiple linear regression analysis.
Background Older adults are known to have more pronated foot posture and decreased toe flexor strength (TFS), as well as decreased mobility in daily life compared to young adults. Although foot posture is reported to be an influential factor for walking biomechanics in young adults, there is less information on this subject in older adults. Age-related reduction in TFS is shown to be associated with impairments of functional performance, but it is poorly understood whether foot posture influences the relationships between TFS and functional performances. Therefore, the present study aimed to elucidate this concern by examining older women. Methods Seventy community-dwelling older women (76.8 ± 4.4 years) voluntarily participated in this study. Foot posture was evaluated by the 6-item foot posture index (FPI). Based on the FPI score, participants were allocated to pronated, neutral, or supinated group (n = 33, 26, and 11, respectively). TFS was assessed using a toe grip dynamometer in a seated position. Scores of 30-s chair stand, timed up-and-go, 5-m comfortable-speed walking, and static balance tests were determined to evaluate functional performances. Pearson’s correlation coefficients were computed to examine the relationships between TFS and functional performances in each group. Results TFS positively correlated with comfortable walking speed in the pronated (r = 0.37, p = 0.03) and supinated (r = 0.76, p < 0.001) groups, but not in the neutral group (r = 0.17, p = 0.42). For the two significant relationships, an analysis of covariance showed that there was no significant difference between the pronated and supinated groups in the slopes of the regression lines, suggesting a similar relative contribution of TFS to comfortable walking speed between the two groups. In addition, TFS tended to negatively correlate with timed up-and-go time in the pronated (r = − 0.32, p = 0.07) and supinated (r = − 0.56, p = 0.08) groups, and positively correlate with 30-s chair stand score in the pronated group (r = 0.31, p = 0.08). Conclusions The present study indicates that TFS would be associated with mobility, walking performance in particular, in older women with pronated and supinated feet but not with neutral feet.
Toe muscular strength plays an important role in enhancing athletic performance because the forefoot is the only part of the body touching the ground. In general, muscular strength increases with age throughout adolescence, and sex-related difference in muscular strength becomes evident during childhood and adolescence. However, toe muscular strength is known to be levelled off after late adolescence in both sexes. For adolescent populations, therefore, the association of toe muscular strength with physical performance might differ with age and/or sex. This study aimed to investigate differences in relationships between toe muscular strength and vertical jump performance across sex and age in adolescent populations. The maximum isometric strength of the toe muscles and vertical jump height (VJ) were assessed in 479 junior high school students (JH) aged 12–14 years (243 boys and 236 girls) and 465 high school students (HS) aged 15–18 years (265 boys and 200 girls). Two types of measurements were performed to evaluate the toe muscular strength: toe gripping strength (TGS) with the metatarsophalangeal joint in the plantar flexed position and toe push strength (TPS) with the metatarsophalangeal joint in the dorsiflexed position. TGS and TPS were normalized to body weight. Two-way ANOVA showed that TGS had significant main effects of sex (boys > girls) and age (HS > JH) while TPS only had a significant main effect of sex (boys > girls). When the effects of sex and age were separately analyzed, VJ was significantly correlated with TGS in JH girls, HS girls, and JH boys (r = 0.253–0.269, p < 0.05), but not in HS boys (r = 0.062, p = 0.3351). These results suggest that toe muscular strength is relatively weakly associated with vertical jump performance in adolescent boys and girls, but the association would not be established in high school boys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.