Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.
The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus.
Community acquired-methicillin resistant Staphylococcus aureus (CA-MRSA) is a socially problematic pathogen that infects healthy individuals, causing severe disease. CA-MRSA is more virulent than hospital associated-MRSA (HA-MRSA). The underlying mechanism for the high virulence of CA-MRSA is not known. The transcription product of the psm-mec gene, located in the mobile genetic element SCCmec of HA-MRSA, but not CA-MRSA, suppresses the expression of phenol-soluble modulin α (PSMα), a cytolytic toxin of S. aureus. Here we report that psm-mec RNA inhibits translation of the agrA gene encoding a positive transcription factor for the PSMα gene via specific binding to agrA mRNA. Furthermore, 25% of 325 clinical MRSA isolates had a mutation in the psm-mec promoter that attenuated transcription, and 9% of the strains had no psm-mec. In most of these psm-mec-mutated or psm-mec-deleted HA-MRSAs, PSMα expression was increased compared with strains carrying intact psm-mec, and some mutated strains produced high amounts of PSMα comparable with that of CA-MRSA. Deletion of psm-mec from HA-MRSA strains carrying intact psm-mec increased the expression of AgrA protein and PSMα, and virulence in mice. Thus, psm-mec RNA suppresses MRSA virulence via inhibition of agrA translation and the absence of psm-mec function in CA-MRSA causes its high virulence property.
Current treatments for liver metastases arising from primary breast and lung cancers are minimally effective. One reason for this unfavorable outcome is that liver metastases are poorly vascularized, limiting the ability to deliver therapeutics from the systemic circulation to lesions. Seeking to enhance transport of agents into the tumor microenvironment, we designed a system in which nanoparticle albumin-bound paclitaxel (nAb-PTX) is loaded into a nanoporous solid multistage nanovector (MSV) to enable the passage of the drug through the tumor vessel wall and enhance its interaction with liver macrophages. MSV enablement increased nAb-PTX efficacy and survival in mouse models of breast and lung liver metastasis. MSV-nAb-PTX also augmented the accumulation of PTX and MSV in the liver, specifically in macrophages, whereas PTX levels in the blood were unchanged after administering MSV-nAb-PTX or nAb-PTX. In vitro studies demonstrated that macrophages treated with MSV-nAb-PTX remained viable and were able to internalize, retain, and release significantly higher quantities of PTX compared to treatment with nAb-PTX. The cytotoxic potency of the released PTX was also confirmed in tumor cells cultured with the supernatants of macrophage treated with MSV-nAB-PTX. Collectively, our findings showed how redirecting nAb-PTX to liver macrophages within the tumor microenvironment can elicit a greater therapeutic response in patients with metastatic liver cancer, without increasing systemic side-effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.