Despite advances in experimental stroke models, confounding factors such as anesthetics used during stroke induction remain. Furthermore, imaging of blood flow during stroke is not routinely done. We take advantage of bihemispheric transcranial windows for longitudinal mesoscopic imaging of cortical function to establish a protocol for focal ischemic stroke induction in target brain regions using photothrombosis in awake head-fixed mice. Our protocol does not require any surgical steps at the time of stroke induction or anesthetics during either head fixation or photoactivation. In addition, we performed laser speckle contrast imaging and wide-field calcium imaging to reveal the effect of cortical spreading ischemic depolarization after stroke in both anesthetized and awake animals over a spatial scale encompassing both hemispheres. With our combined approach, we observed ischemic depolarizing waves (3 to [Formula: see text]) propagating across the cortex 1 to 5 min after stroke induction in genetically encoded calcium indicator mice. Measures of blood flow by laser speckle were correlated with neurological impairment and lesion volume, suggesting a metric for reducing experimental variability. The ability to follow brain dynamics immediately after stroke as well as during recovery may provide a valuable guide to develop activity-dependent therapeutic interventions to be performed shortly after stroke induction.
This study was designed to investigate histological changes in skin tissue accompanying immobilization-induced hypersensitivity. Changes in mechanical sensitivity, epidermal thickness, and peripheral nerve profiles in the upper dermis were examined in glabrous skin of rat hind paw after 1, 2, and 4 weeks of ankle joint immobilization by plaster casts. Induction of mechanical hypersensitivity was confirmed after 2 and 4 weeks of joint immobilization. Epidermal thinning and increase in peripheral nerve profiles were observed in skin tissues in immobilized rats. The time course of epidermal thinning and increase in peripheral nerve profiles were similar closely to that of hypersensitivity, with significant differences between the immobilized and control rats after 2 weeks of immobilization, which became even more remarkable at 4 weeks of immobilization. These findings suggest that joint immobilization by cast induces epidermal thinning and increases peripheral nerve profiles in the upper dermis and that these changes might be partly responsible for immobilization-induced hypersensitivity.
Small vessel disease is characterized by sporadic obstruction of small vessels leading to neuronal cell death. These microinfarcts often escape detection by conventional magnetic resonance imaging and are identified only upon postmortem examination. Our work explores a brain-wide microinfarct model in awake head-fixed mice, where occlusions of small penetrating arterioles are reproduced by endovascular injection of fluorescent microspheres. Mesoscopic functional connectivity was mapped longitudinally in awake GCaMP6 mice using genetically encoded calcium indicators for transcranial wide-field calcium imaging. Microsphere occlusions were quantified and changes in cerebral blood flow were measured with laser speckle imaging. The neurodeficit score in microinfarct mice was significantly higher than in sham, indicating impairment in motor function. The novel object recognition test showed a reduction in the discrimination index in microinfarct mice compared to sham. Graph-theoretic analysis of functional connectivity did not reveal significant differences in functional connectivity between sham and microinfarct mice. While behavioral tasks revealed impairments following microinfarct induction, the absence of measurable functional alterations in cortical activity has a less straightforward interpretation. The behavioral alterations produced by this model are consistent with alterations observed in human patients suffering from microinfarcts and support the validity of microsphere injection as a microinfarct model.
The time course of the increase in peripheral nerve fibres and in the expression of TRPV1 and P2X3 paralleled the development of hypersensitivity, which suggests that histological changes of the skin following cast immobilization may have some relation to the resulting hypersensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.