Lipid droplets are depots of neutral lipids that exist virtually in any kind of cell. Recent studies have revealed that the lipid droplet is not a mere lipid blob, but a major contributor not only to lipid homeostasis but also to diverse cellular functions. Because of the unique structure as well as the functional importance in relation to obesity, steatosis, and other prevailing diseases, the lipid droplet is now reborn as a brand new organelle, attracting interests from researchers of many disciplines.
The lipid droplet (LD), an organelle that exists ubiquitously in various organisms, from bacteria to mammals, has attracted much attention from both medical and cell biology fields. The LD in white adipocytes is often treated as the prototype LD, but is rather a special example, considering that its size, intracellular localization and molecular composition are vastly different from those of non-adipocyte LDs. These differences confer distinct properties on adipocyte and non-adipocyte LDs. In this article, we address the current understanding of LDs by discussing the differences between adipocyte and non-adipocyte LDs.
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
The lipid droplet (LD) is an organelle with a lipid ester core and a surface phospholipid monolayer. The mechanism of LD biogenesis is not well understood. The present study aimed to elucidate the LD growth process, for which we developed a new electron microscopic method that quantifies the proportion of existing and newly synthesized triglycerides in individual LDs. Our method takes advantage of the reactivity of unsaturated fatty acids and osmium tetroxide, which imparts LDs an electron density that reflects fatty acid composition. With this method, existing triglyceride-rich LDs in 3Y1 fibroblasts were observed to incorporate newly synthesized triglycerides at a highly uniform rate. This uniformity and its persistence even after microtubules were depolymerized suggest that triglycerides in fibroblasts are synthesized in the local vicinity of individual LDs and then incorporated. In contrast, LDs in 3T3-L1 adipocytes showed heterogeneity in the rate at which lipid esters were incorporated, indicating different mechanisms of LD growth in fibroblasts and adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.