We propose a sliceable bandwidth variable transceiver (S-BVT) architecture suitable for metro/regional elastic networks and highly scalable data center (DC) applications. It adopts multicarrier modulation (MCM), either OFDM or DMT, and a cost-effective optoelectronic front-end. The high-capacity S-BVT is programmable, adaptive and reconfigurable by an SDN controller for efficient resource usage, enabling unique granularity, flexibility and grid adaptation, even in conventional fixed-grid networks. We experimentally demonstrate its multiple advanced functionalities in a four-node photonic mesh network. This includes SDN-enabled rate/distance adaptive multi-flow generation and routing/switching, slice-ability, flexibility and adaptability for the mitigation of spectrum fragmentation as well as for a soft migration towards the flexi-grid paradigm.
The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.