Ag-Pd bimetallic nanoparticles were prepared directly in ultrathin TiO(2)-gel films by a stepwise ion-exchange/reduction approach. Ion-exchange sites were created in ultrathin films using Mg(2+) ions as template. Ag(+) ion was then incorporated by ion exchange, and converted into metallic nanoparticles by low-temperature H(2) plasma, regenerating ion-exchange sites. The same procedure was then carried out for Pd(2+) ion, producing Pd-on-Ag bimetallic nanoparticles, as TEM observation and plasmon resonance absorption indicate. By contrast, reversed metal incorporation procedure appeared to give a mixture of individual Ag and Pd nanoparticles, as confirmed by TEM, absorption spectroscopy and X-ray photoelectron spectroscopy. For hydrogenation of methyl acrylate, the catalytic activity of the Pd-on-Ag nanoparticle is 367 times as large as that of commercial Pd black and 1.6 times as large as that of Pd monometallic nanoparticle. The outstanding catalytic activity was explicable by the large fraction of the surface-exposed Pd atoms. The formation process of the bimetallic nanoparticle and their general morphological feature are discussed.
Palladium nanoparticles covered with liquid-crystal molecules were prepared by UV irradiation of an alcohol solution of palladium(II) acetate in the presence of liquid-crystal molecules. The prepared Pd nanoparticles have an average diameter of 2.5 nm. A twisted nematic (TN) liquid-crystal device (LCD) was fabricated by doping with Pd nanoparticles covered with another kind of nematic liquid-crystal molecules. In this device the sign of the dielectric anisotropy (Δε) of the liquid-crystal molecules, which cover Pd nanoparticles, is opposite to that of nematic liquid-crystal molecules, which work as the host of the device (Δε>0). The TN-LCD cell fabricated in this research exhibits a frequency modulation response to an applied alternative voltage wave form.
A novel class of hybrid organic thermoelectric materials is demonstrated for the first time for constructing flexible thermoelectric devices on polyimide substrates with high output power by using nanotechnology instead of conducting polymers such as poly(3,4-ethylenedioxythiophene). The hybrid organic thermoelectric materials are composed of nanoparticles of a polymer complex, carbon nanotubes, and poly(vinyl chloride), and show high performance (dimensionless thermoelectric figure-of-merit, ZT ≈ 0.3, based on the thermal conductivity through the film).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.