Introduction
The neural substrates associated with the development of micrographia remain unknown. We aimed to elucidate the neural substrates underlying micrographia in Parkinson's disease (PD) patients.
Methods
Forty PD patients and 20 healthy controls underwent handwriting tests that involved free writing and copying. We measured the size of each letter and the resting cerebral glucose metabolic rate of the PD patients and another group of age‐ and sex‐matched 14 healthy controls (HCs), who had not participated in the writing tests, using resting‐state 18F‐fluorodeoxyglucose positron emission tomography.
Results
In the PD patients, the prevalence of consistent micrographia (CM) associated with free writing was 2.5% for both tasks. Alternatively, the prevalence of progressive micrographia (PM) was 15% for free writing and 17.5% for copying. In the PD patients, there was no significant difference in the letter sizes between these tasks, whereas the variability of the letter sizes for copying was significantly different from that for free writing. The means and decrements in letter sizes in either task were not significantly correlated with the severity of brady/hypokinesia in the PD patients. For free writing, the PD patients with PM showed glucose hypometabolism in the anterior part of the right middle cingulate cortex, including the rostral cingulate motor area, compared with those without PM. For copying, the PD patients with PM showed glucose hypometabolism in the right superior occipital gyrus, including V3A, compared with those without PM.
Conclusions
These findings suggest that PM in free writing in PD patients is caused by the difficulty of monitoring whether the actual handwriting movements are desirable for maintaining letter size during self‐paced handwriting. By contrast, PM in copying in PD patients is evoked by a lack of visual information about the personal handwriting and hand motions that are used as cues for maintaining letter sizes.
Near-infrared spectroscopy (NIRS), which allows non-invasive monitoring of cerebral activation, might be a useful tool to assess brain activity in stroke patients because it allows recording without imposing restraints on the subject's posture. Previous NIRS studies on stroke patients have focused on brain activation in patients with mild impairment or full recovery, and there has been a lack of data on patients without recovery. In the present study, we compared the hand movement-related brain activation pattern and laterality balance of healthy subjects and of stroke patients with mild or moderate hemiparesis in the chronic phase. In normal subjects, predominantly contralateral activation was observed during unilateral hand grasping. Similar contralateral-predominant activation was observed during grasping with the unaffected hand in stroke patients, and during affected-hand grasping in patients with mild hemiparesis. However, abnormal activation patterns, i.e., bilaterally increased activation and ipsilateral-predominant activation, were observed during affected-hand grasping in patients with moderate hemiparesis. These findings suggest that differences in brain activation patterns in stroke patients are well detected by NIRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.