All inorganic perovskites quantum dots (PeQDs) have attracted much attention for used in thin film display applications and solid-state lighting applications, owing to their narrow band emission with high photoluminescence quantum yields (PLQYs), color tunability, and solution processability. Here, we fabricated low-driving-voltage and high-efficiency CsPbBr PeQDs light-emitting devices (PeQD-LEDs) using a PeQDs washing process with an ester solvent containing butyl acetate (AcOBu) to remove excess ligands from the PeQDs. The CsPbBr PeQDs film washed with AcOBu exhibited a PLQY of 42%, and a narrow PL emission with a full width at half-maximum of 19 nm. We also demonstrated energy level alignment of the PeQD-LED in order to achieve effective hole injection into PeQDs from the adjacent hole injection layer. The PeQD-LED with AcOBu-washed PeQDs exhibited a maximum power efficiency of 31.7 lm W and EQE of 8.73%. Control of the interfacial PeQDs through ligand removal and energy level alignment in the device structure are promising methods for obtaining high PLQYs in film state and high device efficiency.
Cesium lead halide (CsPbX, X = Cl, Br, or I) perovskite quantum dots (QDs) are known as ionic nanocrystals, and their optical properties are greatly affected by the washing solvent used during the purification process. Here, we demonstrate the purification process of CsPbBr perovskite QDs using low-dielectric-constant solvents to completely remove impurities, such as the reaction solvent and desorbed ligands. The use of the ether solvent diethylene glycol dimethyl ether (diglyme), having a low dielectric constant of ε = 7.23, as a poor solvent for reprecipitation allowed for multiple wash cycles, which led to high purity and high photoluminescence quantum yield for CsPbBr QDs. The light-emitting device constructed with the CsPbBr QDs and washed twice with diglyme (two-wash) showed a low turn-on voltage of 2.7 V and a peak external quantum efficiency of over 8%. Thus, the purification of perovskite QDs with multiple wash cycles using a low-dielectric-constant solvent is an effective approach for enhancing not only the optical properties but also the efficiency of perovskite quantum dot light-emitting devices.
AKATSUKI is the Japanese Venus Climate Orbiter that was designed to investigate the climate system of Venus. The orbiter was launched on May 21, 2010, and it reached Venus on December 7, 2010. Thrust was applied by the orbital maneuver engine in an attempt to put AKATSUKI into a westward equatorial orbit around Venus with a 30-h orbital period. However, this operation failed because of a malfunction in the propulsion system. After this failure, the spacecraft orbited the Sun for 5 years. On December 7, 2015, AKATSUKI once again approached Venus and the Venus orbit insertion was successful, whereby a westward equatorial orbit with apoapsis of ~440,000 km and orbital period of 14 days was initiated. Now that AKATSUKI's long journey to Venus has ended, it will provide scientific data on the Venusian climate system for two or more years. For the purpose of both decreasing the apoapsis altitude and avoiding a long eclipse during the orbit, a trim maneuver was performed at the first periapsis. The apoapsis altitude is now ~360,000 km with a periapsis altitude of 1000-8000 km, and the period is 10 days and 12 h. In this paper, we describe the details of the Venus orbit insertion-revenge 1 (VOI-R1) and the new orbit, the expected scientific information to be obtained at this orbit, and the Venus images captured by the onboard 1-µm infrared camera, ultraviolet imager, and long-wave infrared camera 2 h after the successful initiation of the VOI-R1.
SUMMARY Earthquake swarms in the area east of the Izu Peninsula, Central Japan have been active and have been repeated intermittently since 1978 after 40 years of quiescence. The activities were always accompanied by crustal deformations, which were well modelled by dyke intrusions. To study the process of a dyke intrusion, precise hypocentres of the latest activity occurring in 1998 are obtained in this paper using waveform similarity, by which new images of volcanic processes have been successfully acquired at several volcanoes. The relocated hypocentres are mainly aligned on a thin vertical plane with a circular shape at a depth of 3–7 km, and there is an aseismic area at the centre. The normal direction to the plane coincides well with the direction of tectonic extensional stress around the hypocentral area and matches theoretical models well. At the beginning of the activity, a small fraction of the events occurred at greater depth, where hypocentres align on a vertical line and migrate upward at a rate of 1 km h−1. The migration rate in this stage agrees well with a theoretical model of buoyancy‐driven dyke propagation. After 1 day from the beginning, earthquakes began to occur around the aseismic area, and hypocentres spread on the thin circular plane described above. During this activity, the hypocentres seemed to migrate downwards and upwards from the centre. The earthquakes are caused by shear fracture at the tip of the dyke and the migration of hypocentres reflects that the dyke expands downward and upward from the neutrally buoyant layer that is located at the centre of the swarm. In this paper, we also propose a process of magma intrusion based on the precise migration of hypocentres, and show that the 1998 activity is composed of a few simple volcanic processes: magma rising by buoyancy, it staying at a neutral buoyancy point and spreading outward from the neutral point with elastic fracture by an inside excess magma pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.