Background:Expression of mucosa-associated lymphoid tissue 1 (MALT1) is inactivated in oral carcinoma patients with worse prognosis. However, the role in carcinoma progression is unknown. Unveiling genes under the control of MALT1 is necessary to understand the pathology of carcinomas.Methods:Gene data set differentially transcribed in MALT1-stably expressing and -marginally expressing oral carcinoma cells was profiled by the microarray analysis and subjected to the pathway analysis. Migratory abilities of cells in response to MALT1 were determined by wound-healing assay and time-lapse analysis.Results:Totally, 2933 genes upregulated or downregulated in MALT1-expressing cells were identified. The subsequent pathway analysis implicated the inhibition of epidermal growth factor and transforming growth factor-β signalling gene expression, and highlighted the involvement in the cellular movement. Wound closure was suppressed by wild-type MALT1 (66.4%) and accelerated by dominant-negative MALT1 (218.6%), and the velocities of cell migration were increased 0.2-fold and 3.0-fold by wild-type and dominant-negative MALT1, respectively.Conclusion:These observations demonstrate that MALT1 represses genes activating the aggressive phenotype of carcinoma cells, and suggest that MALT1 acts as a tumour suppressor and that the loss of expression stimulates oral carcinoma progression.
Progression of oral carcinomas associates with aberrant activation and inactivation of molecules that work in established or unknown pathways. Although mucosa‑associated lymphoid tissue 1 (MALT1) expressed in normal oral epithelium is inactivated in the aggressive subset of carcinomas with worse prognosis, phenotypic changes of carcinoma cells upon the loss of expression is unknown. We performed a proteomic analysis to identify MALT1‑regulated proteins in oral carcinoma cells. Four different keratins were included in the ten most abundantly changed proteins. K8/18 were upregulated in MALT1 stably‑expressing carcinoma cells and K5/14 in MALT1‑marginal control cells. K8/18 upregulation and K5/14 downregulation were MALT1 dose‑dependent and observed in a series of oral carcinoma cells. MALT1 suppressed cell proliferation (0.52-fold, P<0.01) and its dominant-negative form stimulated it (1.33-fold, P<0.01). The decreased proliferation associated with reduction of cyclin D1, which was recovered by the short interfering RNA against MALT1. Taken together, loss of MALT1 expression alters keratin expression and enhances proliferation of carcinoma cells, and may progress oral carcinomas into the advanced state.
Abstract. Tongue carcinomas are common malignancies of the oral cavity. Understanding the molecular mechanisms behind the disease progression is a prerequisite for improving patient prognosis. Fatty acid-binding proteins (FABPs) are cytoplasmic lipid chaperones that affect cellular organization and energy production. Although their aberrant expression is involved in carcinoma progression, its role in the pathology of tongue carcinomas remains unclear. In the present study, the immunohistochemical expression of FABP4 and FABP5 in tongue carcinomas (n=58) and its involvement in the clinicopathological parameters were examined. Normal tongue epithelial cells expressed FABP5, an epidermal-type FABP, but not FABP4, an adipocyte-type FABP. The cytoplasmic staining of FABP5 was increased in carcinomas with advanced T-stage (P<0.05) and clinical stage (P<0.05). Ectopic expression of FABP4 was detected in almost all carcinomas, although its role in disease progression remains undetermined. Upregulation of FABP5 in the wounded skin of genetically normal mice indicated that microenvironmental tissue factors induce FABP5 expression. The results of the present study demonstrated the aberrant expression of FABP4 and FABP5 in tongue carcinomas and suggested the involvement of FABP5 in disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.