Black rice (Oryza sativa L. Japonica) contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside) were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside) were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.
Anthocyanins are naturally occurring compounds that impart color to fruits, vegetables, and plants, and are believed to have a number of beneficial health effects in both humans and animals. Because of these properties, pharmacokinetic analysis of anthocyanins in tissue has been performed to quantify and identify anthocyanin species although, currently, no methods exist for investigating tissue localization of anthocyanin species or for elucidating the mechanisms of anthocyanin activity. Imaging mass spectrometry (IMS) is powerful tool for determining and visualizing the distribution of a wide range of biomolecules. To investigate whether anthocyanin species could be identified and visualized by IMS, we performed matrix-assisted laser desorption/ionization (MALDI)-IMS analysis, by tandem mass spectrometry (MALDI-IMS-MS), of ten anthocyanin molecular species in rabbiteye blueberry (Vaccinium ashei). The distribution patterns of each anthocyanin species were different in the exocarp and endocarp of blueberry sections. Anthocyanin species composed of delphinidin and petunidin were localized mainly in the exocarp. In contrast, those species composed of cyanidin, peonidin, and malvidin were localized in both the exocarp and the endocarp. Moreover, MALDI-IMS analysis of anthocyanidins in a blueberry section indicated that the distribution patterns of each anthocyanidin species were nearly identical with those of the corresponding anthocyanins. These results suggested that the different distribution patterns of anthocyanin species in the exocarp and endocarp depended on the aglycone rather than on the sugar moieties. This study is the first to visualize anthocyanin molecular species in fruits.
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.
The ongoing COVID-19 pandemic is a major global public health concern. Although rapid point-of-care testing for detecting viral antigen is important for management of the outbreak, the current antigen tests are less sensitive than nucleic acid testing. In our current study, we produce monoclonal antibodies (mAb) that exclusively react with SARS-CoV-2 and exhibit no cross-reactivity with other human coronaviruses including SARS-CoV. Molecular modeling suggest that the mAbs bind to epitopes present on the exterior surface of the nucleocapsid, making them suitable for detecting SARS-CoV-2 in clinical samples. We further select the optimal pair of anti-SARS-CoV-2 NP mAbs using ELISA, and then use this mAb pair to develop immunochromatographic assay augmented with silver amplification technology. Our mAbs recognize the variants of concern (501Y.V1-V3) that are currently in circulation. Due to their high performance, the mAbs of this study can serve as good candidates for developing antigen detection kits for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.