The piwi family genes, which are defined by conserved PAZ and Piwi domains, play important roles in stem cell selfrenewal, RNA silencing, and translational regulation in various organisms. To reveal the function of the mammalian homolog of piwi, we produced and analyzed mice with targeted mutations in the Mili gene, which is one of three mouse homologs of piwi. Spermatogenesis in the MILI-null mice was blocked completely at the early prophase of the first meiosis, from the zygotene to early pachytene, and the mice were sterile. However, primordial germ cell development and female germ cell production were not disturbed. Furthermore, MILI bound to MVH, which is an essential factor during the early spermatocyte stage. The similarities in the phenotypes of the MILI-and MVH-deficient mice and in the physical binding properties of MILI and MVH indicate a functional association of these proteins in post-transcriptional regulation. These data indicate that MILI is essential for the differentiation of spermatocytes. Key words: Mili, Miwi, piwi, Mvh, Spermatogenesis
SummaryMili, a mammalian member of piwi family gene, is essential for spermatogenesis
The gene expression patterns of primordial germ cells (PGCs) and embryonic stem cells were analyzed by a modified serial analysis of gene expression. During the process, we cloned a novel gene, PGC7, which was preferentially expressed in PGCs. Immunohistochemical analysis revealed that PGC7 was specifically expressed in early pre-implantation embryos, PGCs and oocytes. These results suggest that PGC7 might play an important role in the development of PGCs and oocytes.
Genes belonging to the piwi family are required for stem cell self-renewal in diverse organisms. We cloned mouse homologues of piwi by RT-PCR using degenerative primers. The deduced amino acid sequences of mouse homologues MIWI and MILI showed that each contains a well-conserved C-terminal PIWI domain and that each shares significant homology with PIWI and their human counterparts HIWI. Both miwi and mili were found in germ cells of adult testis by in situ hybridization, suggesting that these genes may function in spermatogenesis. Furthermore, mili was expressed in primordial germ cells (PGCs) of developing mouse embryos and may therefore play a role during germ cell formation. MIWI may be involved in RNA processing or translational regulation, since MIWI was found to possess RNA binding activity. Our data suggest that miwi and mili regulate spermatogenesis and primordial germ cell production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.