In situ detection of neural progenitor cells including stem-like cells is essential for studying the basic mechanisms of the generation of cellular diversity in the CNS, upon which therapeutic treatments for CNS injuries, degenerative diseases, and brain tumors may be based. We have generated rat monoclonal antibodies (Mab 14H1 and 14B8) that recognize an RNA-binding protein Musashi1, but not a Musashi1-related protein, Musashi2. The amino acid sequences at the epitope sites of these anti-Musashi1 Mabs are remarkably conserved among the human, mouse, and Xenopus proteins. Spatiotemporal patterns of Musashi1 immunoreactivity in the developing and/or adult CNS tissues of frogs, birds, rodents, and humans indicated that our anti-Musashi1 Mabs reacted with undifferentiated, proliferative cells in the CNS of all the vertebrates tested. Double or triple immunostaining of embryonic mouse brain cells in monolayer cultures demonstrated strong Musashi1 expression in Nestin(+)/RC2(+) cells. The relative number of Musashi1(+)/Nestin(+)/RC2(+) cells increased fivefold when embryonic forebrain cells were cultured to form ‘neurospheres’ in which stem-like cells are known to be enriched through their self-renewing mode of growth. Nestin(+)/RC2(–) cells, which included Tα1-GFP(+) neuronal progenitor cells and GLAST(+) astroglial precursor cells, were also Musashi1(+), as were GFAP(+) astrocytes. Young neurons showed a trace of Musashi1 expression. Cells committed to the oligodendroglial lineage were Musashi(–). Musashi1 was localized to the perikarya of CNS stem-like cells and non-oligodendroglial progenitor cells without shifting to cell processes or endfeet, and is therefore advantageous for identifying each cell and counting cells in situ.
In a randomized, double-blind, placebo-controlled study in 64 subjects with Huntington disease (HD), 8 g/day of creatine administered for 16 weeks was well tolerated and safe. Serum and brain creatine concentrations increased in the creatine-treated group and returned to baseline after washout. Serum 8-hydroxy-2'-deoxyguanosine (8OH2'dG) levels, an indicator of oxidative injury to DNA, were markedly elevated in HD and reduced by creatine treatment.
Hydrogen sulfide (H 2 S) was historically recognized as a toxic gas generated by natural resources. However, its enzymatic production from L-cysteine has recently been demonstrated in mammals. Cystathionine -synthase and cystathionine ␥-lyase, both of which can produce H 2 S, were expressed in mouse pancreatic islet cells and the -cell line, MIN6. L-Cysteine and the H 2 S donor NaHS inhibited glucose-induced insulin release from islets and MIN6 cells. These inhibitory effects were reproduced when insulin release was stimulated by ␣-ketoisocaproate, tolbutamide, or high K ؉
a b s t r a c tWe examined the expression of the major H 2 S-producing enzymes, cystathionine-b-synthase (CBS) and cystathionine-c-lyase (CSE). CBS was ubiquitously distributed in the mouse pancreas, but CSE was found only in the exocrine. Freshly isolated islets expressed CBS, while CSE was faint. However, high glucose increased the CSE expression in the beta-cells. L-Cysteine or NaHS suppressed islet cell apoptosis with high glucose, and increased glutathione content in MIN6 beta-cells. Pretreatment with L-cysteine improved the secretory responsiveness following stimulation with glucose. The CSE inhibitor DL-propargylglycine antagonized these L-cysteine effects. We suggest H 2 S may function as an 'intrinsic brake' which protects beta-cells from glucotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.