Goal-directed behavior is believed to involve interactions of prefrontal cortical and limbic inputs in the nucleus accumbens (NAcc), and their modulation by mesolimbic dopamine (DA) seems to be of primary importance in NAcc function. Using in vivo electrophysiological recordings simultaneously with DA system manipulation in rats, we show that tonic and phasic DA release selectively modulates hippocampal and prefrontal cortical inputs through D1 and D2 receptors, respectively. In addition, we also found that D1 activation and D2 inactivation in the NAcc produced behaviorally selective effects (learning versus set shifting of response strategy) that correspond to specific afferents. These results suggest that the dynamics of DA release regulate the balance between limbic and cortical drive through activation and inactivation of DA receptor subtypes in the accumbens, and this regulates goal-directed behavior.
Dopamine has undergone extensive investigation due to its known involvement in a number of neurological and psychiatric disorders. In particular, studies into pathological conditions have focused on the roles of high amplitude, phasically evoked dopamine release in regions such as the prefrontal cortex and striatum. However, research has shown that dopamine release can be more complex than just phasic release; thus, there is also a tonic, background dopamine release, with alterations in tonic dopamine release likely having unique and important functional roles. Unfortunately, however, tonic dopamine release has received relatively little attention. In this review, we summarize our recent studies and discuss how modulation of the dopamine system, both in terms of phasic activation and attenuation of tonic dopamine are important for the functions of brain regions receiving this dopamine innervation, and that imbalances in these dopamine release mechanisms may play a significant role in psychiatric disorders such as schizophrenia.
The nucleus accumbens regulates goal-directed behaviors by integrating information from limbic structures and the prefrontal cortex. Here, we review recent studies in an attempt to provide an integrated view of the control of information processing in the nucleus accumbens in terms of the regulation of goal-directed behaviors and how disruption of these functions might underlie the pathological states in drug addiction and other psychiatric disorders. We propose a model that could account for the results of several studies investigating limbic-system interactions in the nucleus accumbens and their modulation by dopamine and provide testable hypotheses for how these might relate to the pathophysiology of major psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.