BackgroundHLA genotyping by next generation sequencing (NGS) requires three basic steps, PCR, NGS, and allele assignment. Compared to the conventional methods, such as PCR-sequence specific oligonucleotide primers (SSOP) and -sequence based typing (SBT), PCR-NGS is extremely labor intensive and time consuming. In order to simplify and accelerate the NGS-based HLA genotyping method for multiple DNA samples, we developed and evaluated four multiplex PCR methods for genotyping up to nine classical HLA loci including HLA-A, HLA-B, HLA-C, HLA-DRB1/3/4/5, HLA-DQB1, and HLA-DPB1.ResultsWe developed multiplex PCR methods using newly and previously designed middle ranged PCR primer sets for genotyping different combinations of HLA loci, (1) HLA-DRB1/3/4/5, (2) HLA-DQB1 (3.8 kb to 5.3 kb), (3) HLA-A, HLA-B, HLA-C, and (4) HLA-DPB1 (4.6 kb to 7.2 kb). The primer sets were designed to genotype polymorphic exons to the field 3 level or 6-digit typing. When we evaluated the PCR method for genotyping all nine HLA loci (9LOCI) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the nine HLA loci, all of the 276 alleles genotyped, except for HLA-DRB3/4/5 alleles, were consistent with known alleles assigned by the conventional methods together with relevant locus balance and no excessive allelic imbalance. One multiplex PCR method (9LOCI) was able to provide precise genotyping data even when only 1 ng of genomic DNA was used for the PCR as a sample template.ConclusionsIn this study, we have demonstrated that the multiplex PCR approach for NGS-based HLA genotyping could serve as an alternative routine HLA genotyping method, possibly replacing the conventional methods by providing an accelerated yet robust amplification step. The method also could provide significant merits for clinical applications with its ability to amplify lower quantity of samples and the cost-saving factors.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1514-4) contains supplementary material, which is available to authorized users.
Super high-resolution single molecule sequence-based typing (SS-SBT) is a human leukocyte antigen (HLA) DNA typing method to the field 4 level of allelic resolution (formerly known as eight-digit typing) to efficiently detect new and null alleles without phase ambiguity by combination of long ranged polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) technologies. We previously reported the development and application of the SS-SBT method for the eight classical HLA loci, A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1. In this article, we describe the development of the SS-SBT method for three DRB1 linked loci, DRB3, DRB4 and DRB5 (DRB3/4/5) and characterization of DRB1-DRB3/4/5 haplotype structures to the field 4 level. Locus specific PCR primers for DRB3/4/5 were designed to amplify the gene regions from intron 1 to exon 6 [3' untranslated region (3'UTR)]. In total 20 DRB1 and 13 DRB3/4/5 allele sequences were determined by the SS-SBT to the field 4 level without phase ambiguity using 19 DR51, DR52 and DR53 positive genomic DNA samples obtained from Japanese. Moreover, 18 DRB1-DRB3/4/5 haplotypes were estimated to the field 4 level by the SS-SBT method in contrast to 10 haplotypes estimated by conventional methods to the field 1 level (formerly known as two digit typing). Therefore, DRB1-DRB3/4/5 haplotyping by SS-SBT is expected to provide informative data for improved HLA matching in medical research, transplantation procedures, HLA-related disease studies and human population diversity studies.
The butyrophilin-like protein 2 gene (BTNL2) within the class III region of the major histocompatibility complex genomic region was identified as a rheumatoid arthritis (RA) susceptibility gene by exome sequencing (19 RA cases) with stepwise filtering analysis, and then validated by Sanger sequencing and association analysis using 432 cases and 432 controls. Logistic regression of the Sanger-sequenced single-nucleotide variants in an association study of 432 cases and 432 controls showed that 12 non-synonymous single-nucleotide polymorphisms (SNPs) in BTNL2 were significantly associated with RA. The lowest P-values were obtained from three SNPs, rs41521946, rs28362677 and rs28362678, which were in absolute linkage disequilibrium: P=4.55E-09, odds ratio=1.88, 95% confidence interval=1.52-2.33. The BTNL2 locates on chromosome 6 between HLA-DRB1 and NOTCH4, and is 170 kb apart from these two genes. Although DRB1 and NOTCH4 were reported to be RA-susceptible, the three BTNL2 SNPs retained significant association with RA when evaluated by the logistic regression with the adjustment for RA-susceptible HLA-DRB1 alleles in Japanese or rs2071282-T in NOTCH4: P=0.0156 and P=0.00368, respectively. These results suggest that the three non-synonymous SNPs in BTNL2 confer RA risk independently from HLA-DRB1 and NOTCH4.
Exome sequencings were conducted using 59 patients having rheumatoid arthritis (RA) and 93 controls. After stepwise filtering, 107 genes showed less than 0.05 of P-values by gene-burden tests. Among 107 genes, NDUFA7 which is a subunit of the complex I in the mitochondrial respiratory chain was selected for further analysis based on previous reports. A case-control study was performed on the three single-nucleotide variants (SNVs) of NDUFA7 with 432 cases and 432 controls. An association was observed between NDUFA7 and RA with severe erosive arthritis. These results together with previous reports suggested the involvement of reactive oxygen species (ROS) in the pathogenesis of RA. In the next step, four SNVs from three genes related to the mitochondrial respiratory chain were selected, which is a major source of ROS, and conducted a case-control study. An association was observed based on a pathway-burden test comprising NDUFA7, SDHAF2, SCO1 and ATP5O: P=1.56E-04, odds ratio=2.16, 95% confidence interval=1.43-3.28. Previous reports suggested the involvement of ROS in the pathogenesis of RA. The aggregation of SNVs in the mitochondria respiratory chain suggests the pivotal role of those SNVs in the pathogenesis of RA with severe erosive arthritis.
Although the HLA region contributes to one-third of the genetic factors affecting rheumatoid arthritis (RA), there are few reports on the association of the disease with any of the HLA loci other than the DRB1. In this study we examined the association between RA and the alleles of the six classical HLA loci including DRB1. Six HLA loci (HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) of 1659 Japanese subjects (622 cases; 488 anti-cyclic citrullinated peptides (CCP) antibody (Ab) positive (82.6%); 103 anti-CCP Ab negative (17.4%); 31 not known and 1037 controls) were genotyped. Disease types and positivity/negativity for CCP autoantibodies were used to stratify the cases. Statistical and genetic assessments were performed by Fisher's exact tests, odds ratio, trend tests and haplotype estimation. None of the HLA loci were significantly associated with CCP sero-negative cases after Bonferroni correction and we therefore limited further analyses to using only the anti CCP-positive RA cases and both anti-CCP positive and anti-CCP negative controls. Some alleles of the non-DRB1 HLA loci showed significant association with RA, which could be explained by linkage disequilibrium with DRB1 alleles. However, DPB1*02:01, DPB1*04:01 and DPB1*09:01 conferred RA risk/protection independently from DRB1. DPB1*02:01 was significantly associated with the highly erosive disease type. The odds ratio of the four HLA-loci haplotypes with DRB1*04:05 and DQB1*04:01, which were the high-risk HLA alleles in Japanese, varied from 1.01 to 5.58. C*07:04, and B*15:18 showed similar P-values and odds ratios to DRB1*04:01, which was located on the same haplotype. This haplotype analysis showed that the DRB1 gene as well as five other HLA loci is required for a more comprehensive understanding of the genetic association between HLA and RA than analyzing DRB1 alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.