We identified a seven-pass transmembrane receptor of the cadherin superfamily, designated Flamingo (Fmi), localized at cell-cell boundaries in the Drosophila wing. In the absence of Fmi, planar polarity was distorted. Before morphological polarization of wing cells along the proximal-distal (P-D) axis, Fmi was redistributed predominantly to proximal and distal cell edges. This biased localization of Fmi appears to be driven by an imbalance of the activity of Frizzled (Fz) across the proximal/distal cell boundary. These results, together with phenotypes caused by ectopic expression of fz and fmi, suggest that cells acquire the P-D polarity by way of the Fz-dependent boundary localization of Fmi.
Cells in a variety of developmental contexts sense extracellular cues that are given locally on their surfaces, and subsequently amplify the initial signal to achieve cell polarization. Drosophila wing cells acquire planar polarity along the proximal-distal (P-D) axis, in which the amplification of the presumptive cue involves assembly of a multiprotein complex that spans distal and proximal boundaries of adjacent cells. Here we pursue the mechanisms that place one of the components, Frizzled (Fz), at the distal side. Intracellular particles of GFP-tagged Fz moved preferentially toward distal boundaries before Fz::GFP and other components were tightly localized at the P/D cortex. Arrays of microtubules (MTs) were approximately oriented along the P-D axis and these MTs contributed to the formation of the cortical complex. Furthermore, there appeared to be a bias in the P-D MTs, with slightly more plus ends oriented distally. The hypothesis of polarized vesicular trafficking of Fz is discussed.
Summary How global organ asymmetry and individual cell polarity are connected to each other is a central question in studying planar cell polarity (PCP). In the Drosophila wing, which develops PCP along its proximal-distal (P-D) axis, we previously proposed that the core PCP mediator Frizzled redistributes distally in a microtubule (MT)-dependent manner. Here we performed organ-wide analysis of MT dynamics by introducing quantitative in vivo imaging. We observed MTs aligning along the P-D axis at the onset of redistribution and a small but significant excess of + ends-distal MTs in the proximal region of the wing. This characteristic alignment and asymmetry of MT growth was controlled by atypical cadherins Dachsous (Ds) and Fat (Ft). Furthermore, the action of Ft was mediated in part by PAR-1. All these data support the idea that the active reorientation of MT growth adjusts cell polarity along the organ axis.
The Drosophila wing provides an appropriate model system for studying genetic programming of planar cell polarity (PCP) [1-4]. Each wing cell respects the proximodistal (PD) axis; i.e., it localizes an assembly of actin bundles to its distalmost vertex and produces a single prehair. This PD polarization requires the redistribution of Flamingo (Fmi), a seven-pass transmembrane cadherin, to proximal/distal cell boundaries; otherwise, the cell mislocalizes the prehair [5]. Achievement of the biased Fmi pattern depends on two upstream components in the PCP signaling pathway: Frizzled (Fz), a receptor for a hypothetical polarity signal, and an intracellular protein, Dishevelled (Dsh) [6-8]. Here, we visualized endogenous Dsh in the developing wing. A portion of Dsh colocalized with Fmi, and the distributions of both proteins were interdependent. Furthermore, Fz controlled the association of Dsh with cell boundaries, which association was correlated with the presence of hyperphosphorylated forms of Dsh. Our results, together with a recent study on Fz distribution [9], support the possibility that Fz, Dsh, and Fmi constitute a signaling complex and that its restricted localization directs cytoskeletal reorganization only at the distal cell edge.
Summary The maturation of animal oocytes is highly sensitive to nutrient availability. During Drosophila oogenesis, a prominent metabolic checkpoint occurs at the onset of yolk uptake (vitellogenesis): under nutrient stress, egg chambers degenerate by apoptosis. To investigate additional responses to nutrient deprivation, we studied the intercellular transport of cytoplasmic components between nurse cells and the oocyte during previtellogenic stages. Using GFP protein-traps, we showed that Ypsilon Schachtel (Yps), a putative RNA binding protein, moved into the oocyte by both microtubule (MT)-dependent and -independent mechanisms, and was retained in the oocyte in a MT-dependent manner. These data suggest that oocyte enrichment is accomplished by a combination of MT-dependent polarized transport and MT-independent flow coupled with MT-dependent trapping within the oocyte. Under nutrient stress, Yps and other components of the oskar ribonucleoprotein complex accumulated in large processing bodies in nurse cells, accompanied by MT reorganization. This response was detected as early as 2 hrs after starvation, suggesting that young egg chambers rapidly respond to nutrient stress. Moreover, both Yps aggregation and MT reorganization were reversed with re-feeding of females or the addition of exogenous insulin to cultured egg chambers. Our results suggest that egg chambers rapidly mount a stress response by altering intercellular transport upon starvation. This response implies a mechanism for preserving young egg chambers so that egg production can rapidly resume when nutrient availability improves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.