ARX (the aristaless-related homeobox gene) is a transcription factor that participates in the development of GABAergic and cholinergic neurons in the forebrain. Many ARX mutations have been identified in X-linked lissencephaly and mental retardation with epilepsy, and thus ARX is considered to be a causal gene for the two syndromes although the neurobiological functions of each mutation remain unclear. We attempted to elucidate the causal relationships between individual ARX mutations and disease phenotypes by generating a series of mutant mice. We generated three types of mice with knocked-in ARX mutations associated with X-linked lissencephaly (P353R) and mental retardation [P353L and 333ins(GCG)7]. Mice with the P355R mutation (equivalent to the human 353 position) that died after birth were significantly different in Arx transcript/protein amounts, GABAergic and cholinergic neuronal development, brain morphology and lifespan from mice with P355L and 330ins(GCG)7 but considerably similar to Arx-deficient mice with truncated ARX mutation in lissencephaly. Mice with the 330ins(GCG)7 mutation showed severe seizures and impaired learning performance, whereas mice with the P355L mutation exhibited mild seizures and only slightly impaired learning performance. Both types of mutant mice exhibited the mutation-specific lesser presence of GABAergic and cholinergic neurons in the striatum, medial septum and ventral forebrain nuclei when compared with wild-type mice. Present findings that reveal a causal relationship between ARX mutations and the pleiotropic phenotype in mice, suggest that the ARX-related syndrome, including lissencephaly or mental retardation, is caused by only the concerned ARX mutations without the involvement of other genetic factors.
The infectious protozoan parasite Entamoeba histolytica is responsible for amebiasis causing colitis and liver abscesses, which is an epidemic in developing countries. To develop a drug discovery strategy targeting the iron source required for the proliferation of E. histolytica, an untapped chemical group consisting of lowmolecular-weight compounds with metal-binding affinity was investigated. Electrochemically neutral polypyridine compounds, PHN-R 2 , that showed specific Fe(II)binding affinity and growth inhibitory ability against E. histolytica were identified. Furthermore, the iron-dependent IC 50 values of PHN-R 2 and the spectrometric analytical data of their iron complexes clarified the relationship between the antiamebic activity and the iron-targeting specificity. Notably, when PHN-H 2 was administrated to E. histolytica-infected hamsters as an animal model of amebiasis, it exhibited a prominent therapeutic efficacy to completely cure liver abscesses without serious side effects. Deciphering the antiamebic activity of iron-targeting compounds in vitro and in vivo provides valuable insights into the development of a next-generation drug against amebiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.